BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 21214205)

  • 21. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media.
    Prathap Chandran S; Ghatak J; Satyam PV; Sastry M
    J Colloid Interface Sci; 2007 Aug; 312(2):498-505. PubMed ID: 17434179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic considerations and computer simulations on the formation of core-shell nanoparticles under electrochemical conditions.
    Oviedo OA; Leiva EP; Mariscal MM
    Phys Chem Chem Phys; 2008 Jun; 10(24):3561-8. PubMed ID: 18548162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors.
    Zhang X; Wang H; Su Z
    Langmuir; 2012 Nov; 28(44):15705-12. PubMed ID: 23075212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances.
    Huang J; Zhu Y; Liu C; Zhao Y; Liu Z; Hedhili MN; Fratalocchi A; Han Y
    Small; 2015 Oct; 11(39):5214-21. PubMed ID: 26270384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.
    Shankar SS; Rai A; Ahmad A; Sastry M
    J Colloid Interface Sci; 2004 Jul; 275(2):496-502. PubMed ID: 15178278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity.
    Pandikumar A; Murugesan S; Ramaraj R
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1912-7. PubMed ID: 20662486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. (Hollow Au-Ag nanoparticles)-TiO2 composites for improved photocatalytic activity prepared from block copolymer-stabilized bimetallic nanoparticles.
    Li N; Zhang X; Yuan S; Zhang X; Yuan Y; Li X
    Phys Chem Chem Phys; 2015 May; 17(18):12023-30. PubMed ID: 25872883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel formation of Ag/Au bimetallic nanoparticles by physical mixture of monometallic nanoparticles in dispersions and their application to catalysts for aerobic glucose oxidation.
    Zhang H; Haba M; Okumura M; Akita T; Hashimoto S; Toshima N
    Langmuir; 2013 Aug; 29(33):10330-9. PubMed ID: 23829515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis.
    Liu FK; Tsai MH; Hsu YC; Chu TC
    J Chromatogr A; 2006 Nov; 1133(1-2):340-6. PubMed ID: 16939685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using reversed-phase liquid chromatography to monitor the sizes of Au/Pt core/shell nanoparticles.
    Liu FK; Chang YC
    J Chromatogr A; 2010 Mar; 1217(10):1647-53. PubMed ID: 20116795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium.
    Yang J; Lee JY; Too HP
    J Phys Chem B; 2005 Oct; 109(41):19208-12. PubMed ID: 16853479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand-functionalized core/shell Ag@Au nanoparticles label-free amperometric immun-biosensor.
    Tang D; Yuan R; Chai Y
    Biotechnol Bioeng; 2006 Aug; 94(5):996-1004. PubMed ID: 16552777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Synthesis and absorption spectra properties of Au-Ag alloy nanoparticles using gallic acid as reductant].
    Wang WX; Huang YP; Chen QF; Xu SK; Yang DZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1726-9. PubMed ID: 18975789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Preparation and surface enhanced raman spectroscopic studies on Au-Ag alloy nanoparticles].
    Jin YL; Yao JL; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1309-11. PubMed ID: 18800711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles.
    Li H; Jo JK; Zhang LD; Ha CS; Suh H; Kim I
    Langmuir; 2010 Dec; 26(23):18442-53. PubMed ID: 21047097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles.
    Merrifield RC; Stephan C; Lead JR
    Talanta; 2017 Jan; 162():130-134. PubMed ID: 27837808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework.
    Jiang HL; Liu B; Akita T; Haruta M; Sakurai H; Xu Q
    J Am Chem Soc; 2009 Aug; 131(32):11302-3. PubMed ID: 19637919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor.
    Tzounis L; Doña M; Lopez-Romero JM; Fery A; Contreras-Caceres R
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29360-29372. PubMed ID: 31329406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.