BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 21214205)

  • 81. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Aqueous synthesis and characterization of Ag and Ag-Au nanoparticles: addressing challenges in size, monodispersity and structure.
    Mott D; Thuy NT; Aoki Y; Maenosono S
    Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1927):4275-92. PubMed ID: 20732887
    [TBL] [Abstract][Full Text] [Related]  

  • 84. How isolated are the electronic states of the core in core/shell nanoparticles?
    Xie Z; Markus TZ; Gotesman G; Deutsch Z; Oron D; Naaman R
    ACS Nano; 2011 Feb; 5(2):863-9. PubMed ID: 21207972
    [TBL] [Abstract][Full Text] [Related]  

  • 85. One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane.
    Yan JM; Zhang XB; Akita T; Haruta M; Xu Q
    J Am Chem Soc; 2010 Apr; 132(15):5326-7. PubMed ID: 20345145
    [TBL] [Abstract][Full Text] [Related]  

  • 86. AuAg bimetallic nanoparticles film fabricated based on H2O2-mediated silver reduction and its application.
    Wang L; Wang F; Shang L; Zhu C; Ren W; Dong S
    Talanta; 2010 Jun; 82(1):113-7. PubMed ID: 20685444
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Seed-mediated growth of MOF-encapsulated Pd@Ag core-shell nanoparticles: toward advanced room temperature nanocatalysts.
    Chen L; Huang B; Qiu X; Wang X; Luque R; Li Y
    Chem Sci; 2016 Jan; 7(1):228-233. PubMed ID: 28758001
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Near-field and far-field scattering by bimetallic nanoshell systems.
    Bruzzone S; Malvaldi M; Arrighini GP; Guidotti C
    J Phys Chem B; 2006 Jun; 110(23):11050-4. PubMed ID: 16771364
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Counterion coupled (COCO) gemini surfactant capped Ag/Au alloy and Ag@Au core-shell nanoparticles for cancer therapy.
    Siddiq AM; Thangam R; Madhan B; Alam MS
    RSC Adv; 2019 Nov; 9(65):37830-37845. PubMed ID: 35541822
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates.
    Devarajan S; Bera P; Sampath S
    J Colloid Interface Sci; 2005 Oct; 290(1):117-29. PubMed ID: 15939432
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Synthesis of Au, Ag, and Au-Ag Bimetallic Nanoparticles Using
    Khan M; Al-Hamoud K; Liaqat Z; Shaik MR; Adil SF; Kuniyil M; Alkhathlan HZ; Al-Warthan A; Siddiqui MRH; Mondeshki M; Tremel W; Khan M; Tahir MN
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32962292
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Fabrication and evaluation of Au-Pd core-shell nanocomposites for dechlorination of diclofenac in water.
    Wang X; Li JR; Fu ML; Yuan B; Cui HJ; Wang YF
    Environ Technol; 2015; 36(9-12):1510-8. PubMed ID: 25441536
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Tuning of the spectroscopic properties of composite nanoparticles by the insertion of a spacer layer: effect of exciton-plasmon coupling.
    Yoshida A; Yonezawa Y; Kometani N
    Langmuir; 2009 Jun; 25(12):6683-9. PubMed ID: 19371042
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Electrocatalytic properties of Au@Pt nanoparticles: effects of Pt shell packing density and Au core size.
    Du B; Zaluzhna O; Tong YJ
    Phys Chem Chem Phys; 2011 Jun; 13(24):11568-74. PubMed ID: 21597636
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Synthesis of block copolymer-stabilized Au-Ag alloy nanoparticles and fabrication of poly(methyl methacrylate)/Au-Ag nanocomposite film.
    Chatterjee U; Jewrajka SK
    J Colloid Interface Sci; 2007 Sep; 313(2):717-23. PubMed ID: 17574566
    [TBL] [Abstract][Full Text] [Related]  

  • 97. An unconventional role of ligand in continuously tuning of metal-metal interfacial strain.
    Feng Y; He J; Wang H; Tay YY; Sun H; Zhu L; Chen H
    J Am Chem Soc; 2012 Feb; 134(4):2004-7. PubMed ID: 22239595
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Rattle-type hierarchical particles containing multilevel cores (Ag@AgCl@SiO2 and Au/Ag@AgCl@SiO2) as versatile catalysts.
    Huy do X; Lee HJ; Lee YB; Choi WS
    J Colloid Interface Sci; 2014 Jul; 425():178-85. PubMed ID: 24776680
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness.
    Jones W; Su R; Wells PP; Shen Y; Dimitratos N; Bowker M; Morgan D; Iversen BB; Chutia A; Besenbacher F; Hutchings G
    Phys Chem Chem Phys; 2014 Dec; 16(48):26638-44. PubMed ID: 25363813
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Novel Au-Pd bimetallic core-shell nanocomplex and its catalytic activity modulation.
    Xiong D; Li Z; An Y; Ma R; Shi L
    J Colloid Interface Sci; 2010 Oct; 350(1):260-7. PubMed ID: 20633890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.