BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 21214225)

  • 1. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Thermodynamics of Protein-Ligand Binding by Isothermal Titration Calorimetry as Aid to Drug Design.
    Paketurytė V; Zubrienė A; Ladbury JE; Matulis D
    Methods Mol Biol; 2019; 1964():61-74. PubMed ID: 30929235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry.
    Baum B; Muley L; Smolinski M; Heine A; Hangauer D; Klebe G
    J Mol Biol; 2010 Apr; 397(4):1042-54. PubMed ID: 20156458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PDBcal: a comprehensive dataset for receptor-ligand interactions with three-dimensional structures and binding thermodynamics from isothermal titration calorimetry.
    Li L; Dantzer JJ; Nowacki J; O'Callaghan BJ; Meroueh SO
    Chem Biol Drug Des; 2008 Jun; 71(6):529-32. PubMed ID: 18482338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting binding energetics from structure: looking beyond DeltaG degrees.
    Murphy KP
    Med Res Rev; 1999 Jul; 19(4):333-9. PubMed ID: 10398929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores.
    Benson ML; Faver JC; Ucisik MN; Dashti DS; Zheng Z; Merz KM
    J Comput Aided Mol Des; 2012 May; 26(5):647-59. PubMed ID: 22476578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method.
    Mazanetz MP; Ichihara O; Law RJ; Whittaker M
    J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions.
    Cramer DL; Cheng B; Tian J; Clements JH; Wypych RM; Martin SF
    Eur J Med Chem; 2020 Dec; 208():112771. PubMed ID: 32916312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design.
    Olsson TS; Williams MA; Pitt WR; Ladbury JE
    J Mol Biol; 2008 Dec; 384(4):1002-17. PubMed ID: 18930735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions.
    Huang SY; Zou X
    J Chem Inf Model; 2010 Feb; 50(2):262-73. PubMed ID: 20088605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion Complexes with Tetrazine-Based Ligands: Formation of Strong Anion-π Interactions in Solution and in the Solid State.
    Savastano M; Bazzicalupi C; Giorgi C; García-Gallarín C; López de la Torre MD; Pichierri F; Bianchi A; Melguizo M
    Inorg Chem; 2016 Aug; 55(16):8013-24. PubMed ID: 27454810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Affinity by Correct Ligand Preorganization for the S2 Pocket of Thrombin: A Study by Isothermal Titration Calorimetry, Molecular Dynamics, and High-Resolution Crystal Structures.
    Rühmann EH; Rupp M; Betz M; Heine A; Klebe G
    ChemMedChem; 2016 Feb; 11(3):309-19. PubMed ID: 26762840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design.
    Linkuvienė V; Zubrienė A; Manakova E; Petrauskas V; Baranauskienė L; Zakšauskas A; Smirnov A; Gražulis S; Ladbury JE; Matulis D
    Q Rev Biophys; 2018 Jan; 51():e10. PubMed ID: 30912486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the thermodynamics of protein/DNA complexes and their components using micro-calorimetry.
    Crane-Robinson C; Dragan AI; Read CM
    Methods Mol Biol; 2009; 543():625-51. PubMed ID: 19378190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines.
    Koppisetty CA; Frank M; Kemp GJ; Nyholm PG
    J Chem Inf Model; 2013 Oct; 53(10):2559-70. PubMed ID: 24050538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target-ligand binding affinity from single point enthalpy calculation and elemental composition.
    Szél V; Zsidó BZ; Jeszenői N; Hetényi C
    Phys Chem Chem Phys; 2023 Nov; 25(46):31714-31725. PubMed ID: 37964670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.
    Yang CY; Sun H; Chen J; Nikolovska-Coleska Z; Wang S
    J Am Chem Soc; 2009 Sep; 131(38):13709-21. PubMed ID: 19736924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study.
    Holdgate GA; Tunnicliffe A; Ward WH; Weston SA; Rosenbrock G; Barth PT; Taylor IW; Pauptit RA; Timms D
    Biochemistry; 1997 Aug; 36(32):9663-73. PubMed ID: 9245398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes.
    Wang R; Lu Y; Fang X; Wang S
    J Chem Inf Comput Sci; 2004; 44(6):2114-25. PubMed ID: 15554682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.