These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21214239)

  • 21. Synthesis and characterization of a photosensitive interface for hydrogen generation: Chemically modified p-type semiconducting silicon photocathodes.
    Bookbinder DC; Bruce JA; Dominey RN; Lewis NS; Wrighton MS
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6280-4. PubMed ID: 16592907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction.
    Berglund SP; He H; Chemelewski WD; Celio H; Dolocan A; Mullins CB
    J Am Chem Soc; 2014 Jan; 136(4):1535-44. PubMed ID: 24393053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A waferscale Si wire solar cell using radial and bulk p-n junctions.
    Jung JY; Guo Z; Jee SW; Um HD; Park KT; Hyun MS; Yang JM; Lee JH
    Nanotechnology; 2010 Nov; 21(44):445303. PubMed ID: 20935359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.
    Jaramillo TF; Baeck SH; Kleiman-Shwarsctein A; Choi KS; Stucky GD; McFarland EW
    J Comb Chem; 2005; 7(2):264-71. PubMed ID: 15762755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Li(12)Si(60)H(60) fullerene composite: a promising hydrogen storage medium.
    Lan J; Cao D; Wang W
    ACS Nano; 2009 Oct; 3(10):3294-300. PubMed ID: 19761195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-Doped nanodots/np(+)-Si photocathodes for efficient photoelectrochemical hydrogen generation.
    Chen D; Dai S; Su X; Xin Y; Zou S; Wang X; Kang Z; Shen M
    Chem Commun (Camb); 2015 Oct; 51(83):15340-3. PubMed ID: 26343502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation.
    Kitano M; Funatsu K; Matsuoka M; Ueshima M; Anpo M
    J Phys Chem B; 2006 Dec; 110(50):25266-72. PubMed ID: 17165971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.
    Morales-Guio CG; Thorwarth K; Niesen B; Liardet L; Patscheider J; Ballif C; Hu X
    J Am Chem Soc; 2015 Jun; 137(22):7035-8. PubMed ID: 26005904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 11.5% efficiency of TiO
    Yin Z; Fan R; Huang G; Shen M
    Chem Commun (Camb); 2018 Jan; 54(5):543-546. PubMed ID: 29292435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoelectrochemical behavior of n-type Si(111) electrodes coated with a single layer of graphene.
    Nielander AC; Bierman MJ; Petrone N; Strandwitz NC; Ardo S; Yang F; Hone J; Lewis NS
    J Am Chem Soc; 2013 Nov; 135(46):17246-9. PubMed ID: 24125019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition.
    Dasog M; Carim AI; Yalamanchili S; Atwater HA; Lewis NS
    Nano Lett; 2016 Aug; 16(8):5015-21. PubMed ID: 27322391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative analysis of photons' decaying pathways in Si nanowire arrays for highly efficient photoelectrochemical solar hydrogen generation.
    Duan C; Wang H; Zhang B; Li F; Ou X; Zhang X
    Chem Commun (Camb); 2015 Feb; 51(16):3383-6. PubMed ID: 25622299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epitaxial III-V films and surfaces for photoelectrocatalysis.
    Döscher H; Supplie O; May MM; Sippel P; Heine C; Muñoz AG; Eichberger R; Lewerenz HJ; Hannappel T
    Chemphyschem; 2012 Aug; 13(12):2899-909. PubMed ID: 22890851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A semiconductor junction photoelectrochemical device without a depletion region.
    Jung JY; Kim SH; Shinde SS; Kim DH; Lin C; Lee JH
    Nanoscale; 2019 Dec; 11(47):23013-23020. PubMed ID: 31769774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An n-Si/n-Fe2O3 heterojunction tandem photoanode for solar water splitting.
    van de Krol R; Liang Y
    Chimia (Aarau); 2013; 67(3):168-71. PubMed ID: 23574957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.
    Bao XQ; Fatima Cerqueira M; Alpuim P; Liu L
    Chem Commun (Camb); 2015 Jul; 51(53):10742-5. PubMed ID: 26050844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Material contrast in SEM: Fermi energy and work function effects.
    Cazaux J
    Ultramicroscopy; 2010 Feb; 110(3):242-53. PubMed ID: 20061085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions.
    Vijselaar W; Tiggelaar RM; Gardeniers H; Huskens J
    ACS Energy Lett; 2018 May; 3(5):1086-1092. PubMed ID: 29780886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.
    Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E
    Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.