BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21214272)

  • 1. Peptidomics and peptide hormone processing in the Drosophila midgut.
    Reiher W; Shirras C; Kahnt J; Baumeister S; Isaac RE; Wegener C
    J Proteome Res; 2011 Apr; 10(4):1881-92. PubMed ID: 21214272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry.
    Baggerman G; Boonen K; Verleyen P; De Loof A; Schoofs L
    J Mass Spectrom; 2005 Feb; 40(2):250-60. PubMed ID: 15706625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila neuropeptides in regulation of physiology and behavior.
    Nässel DR; Winther AM
    Prog Neurobiol; 2010 Sep; 92(1):42-104. PubMed ID: 20447440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila Peptide Hormones Allatostatin A and Diuretic Hormone 31 Exhibiting Complementary Gradient Distribution in Posterior Midgut Antagonistically Regulate Midgut Senescence and Adult Lifespan.
    Takeda K; Okumura T; Terahata M; Yamaguchi M; Taniguchi K; Adachi-Yamada T
    Zoolog Sci; 2018 Feb; 35(1):75-85. PubMed ID: 29417892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrograde BMP signaling controls Drosophila behavior through regulation of a peptide hormone battery.
    Veverytsa L; Allan DW
    Development; 2011 Aug; 138(15):3147-57. PubMed ID: 21750027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells.
    Chen J; Kim SM; Kwon JY
    Mol Cells; 2016 Apr; 39(4):358-66. PubMed ID: 27025390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot.
    Veenstra JA
    Cell Tissue Res; 2009 May; 336(2):309-23. PubMed ID: 19319573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells.
    Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA
    Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct mass spectrometric peptide profiling and fragmentation of larval peptide hormone release sites in Drosophila melanogaster reveals tagma-specific peptide expression and differential processing.
    Wegener C; Reinl T; Jänsch L; Predel R
    J Neurochem; 2006 Mar; 96(5):1362-74. PubMed ID: 16441518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Labeling to Quantify Drosophila Neuropeptides and Peptide Hormones.
    Kunz TO; Chen J; Megha ; Wegener C
    Methods Mol Biol; 2018; 1719():175-185. PubMed ID: 29476511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processed short neuropeptide F peptides regulate growth through the ERK-insulin pathway in Drosophila melanogaster.
    Lee KS; Hong SH; Kim AK; Ju SK; Kwon OY; Yu K
    FEBS Lett; 2009 Aug; 583(15):2573-7. PubMed ID: 19619547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a proctolin preprohormone gene (Proct) of Drosophila melanogaster: expression and predicted prohormone processing.
    Taylor CA; Winther AM; Siviter RJ; Shirras AD; Isaac RE; Nässel DR
    J Neurobiol; 2004 Feb; 58(3):379-91. PubMed ID: 14750150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2.
    Veenstra JA; Ida T
    Cell Tissue Res; 2014 Sep; 357(3):607-21. PubMed ID: 24850274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory peptides in fruit fly midgut.
    Veenstra JA; Agricola HJ; Sellami A
    Cell Tissue Res; 2008 Dec; 334(3):499-516. PubMed ID: 18972134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptidomic profiling of secreted products from pancreatic islet culture results in a higher yield of full-length peptide hormones than found using cell lysis procedures.
    Taylor SW; Nikoulina SE; Andon NL; Lowe C
    J Proteome Res; 2013 Aug; 12(8):3610-9. PubMed ID: 23746063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal organization of enteroendocrine peptide expression in
    Jang S; Chen J; Choi J; Lim SY; Song H; Choi H; Kwon HW; Choi MS; Kwon JY
    J Neurogenet; 2021; 35(4):387-398. PubMed ID: 34670462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence and biological activity of a calcitonin-like diuretic hormone (DH31) from Rhodnius prolixus.
    Brugge VA; Schooley DA; Orchard I
    J Exp Biol; 2008 Feb; 211(Pt 3):382-90. PubMed ID: 18203994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells.
    LaJeunesse DR; Johnson B; Presnell JS; Catignas KK; Zapotoczny G
    BMC Physiol; 2010 Aug; 10():14. PubMed ID: 20698983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster.
    Tu MP; Yin CM; Tatar M
    Gen Comp Endocrinol; 2005 Jul; 142(3):347-56. PubMed ID: 15935161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.