These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21214272)

  • 21. Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides.
    Nichols R
    Annu Rev Entomol; 2003; 48():485-503. PubMed ID: 12414735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of protein complex constituents and their phosphorylation states on a LTQ-Orbitrap instrument.
    Przybylski C; Jünger MA; Aubertin J; Radvanyi F; Aebersold R; Pflieger D
    J Proteome Res; 2010 Oct; 9(10):5118-32. PubMed ID: 20734990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the elusive peptidergic diuretic hormone in the blood-feeding bug Rhodnius prolixus: a CRF-related peptide.
    Te Brugge V; Paluzzi JP; Schooley DA; Orchard I
    J Exp Biol; 2011 Feb; 214(Pt 3):371-81. PubMed ID: 21228196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.
    Park JH; Kwon JY
    PLoS One; 2011; 6(12):e29022. PubMed ID: 22194978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass spectrometric analysis of synapsins in Drosophila melanogaster and identification of novel phosphorylation sites.
    Nuwal T; Heo S; Lubec G; Buchner E
    J Proteome Res; 2011 Feb; 10(2):541-50. PubMed ID: 21028912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut.
    Park JH; Chen J; Jang S; Ahn TJ; Kang K; Choi MS; Kwon JY
    FEBS Lett; 2016 Feb; 590(4):493-500. PubMed ID: 26801353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP.
    Cabrero P; Radford JC; Broderick KE; Costes L; Veenstra JA; Spana EP; Davies SA; Dow JA
    J Exp Biol; 2002 Dec; 205(Pt 24):3799-807. PubMed ID: 12432004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct MALDI-TOF mass spectrometric peptide profiling of neuroendocrine tissue of Drosophila.
    Wegener C; Neupert S; Predel R
    Methods Mol Biol; 2010; 615():117-27. PubMed ID: 20013204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunocytochemical localization of Diploptera punctata allatostatin-like peptide in Drosophila melanogaster.
    Yoon JG; Stay B
    J Comp Neurol; 1995 Dec; 363(3):475-88. PubMed ID: 8847412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS.
    Verleyen P; Baggerman G; D'Hertog W; Vierstraete E; Husson SJ; Schoofs L
    J Insect Physiol; 2006 Apr; 52(4):379-88. PubMed ID: 16510152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning, genomic organization, and expression of a C-type (Manduca sexta-type) allatostatin preprohormone from Drosophila melanogaster.
    Williamson M; Lenz C; Winther AM; Nässel DR; Grimmelikhuijzen CJ
    Biochem Biophys Res Commun; 2001 Mar; 282(1):124-30. PubMed ID: 11263981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized peptide separation and identification for mass spectrometry based proteomics via free-flow electrophoresis.
    Malmström J; Lee H; Nesvizhskii AI; Shteynberg D; Mohanty S; Brunner E; Ye M; Weber G; Eckerskorn C; Aebersold R
    J Proteome Res; 2006 Sep; 5(9):2241-9. PubMed ID: 16944936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteome profiling for assessing diversity: analysis of individual heads of Drosophila melanogaster using LC-ion mobility-MS.
    Taraszka JA; Gao X; Valentine SJ; Sowell RA; Koeniger SL; Miller DF; Kaufman TC; Clemmer DE
    J Proteome Res; 2005; 4(4):1238-47. PubMed ID: 16083273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bowman-Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster.
    Li HM; Sun L; Mittapalli O; Muir WM; Xie J; Wu J; Schemerhorn BJ; Jannasch A; Chen JY; Zhang F; Adamec J; Murdock LL; Pittendrigh BR
    Insect Mol Biol; 2010 Jun; 19(3):303-13. PubMed ID: 20113373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome.
    Domon B; Bodenmiller B; Carapito C; Hao Z; Huehmer A; Aebersold R
    J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interorgan communication through peripherally derived peptide hormones in
    Okamoto N; Watanabe A
    Fly (Austin); 2022 Dec; 16(1):152-176. PubMed ID: 35499154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of novel split-GAL4 drivers for the characterization of enteroendocrine cells in the Drosophila melanogaster midgut.
    Holsopple JM; Cook KR; Popodi EM
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35485968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila.
    Winther AM; Siviter RJ; Isaac RE; Predel R; Nässel DR
    J Comp Neurol; 2003 Sep; 464(2):180-96. PubMed ID: 12898611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system.
    Dircksen H
    J Exp Biol; 2009 Feb; 212(Pt 3):401-12. PubMed ID: 19151215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroendocrine cells in Drosophila melanogaster producing GPA2/GPB5, a hormone with homology to LH, FSH and TSH.
    Sellami A; Agricola HJ; Veenstra JA
    Gen Comp Endocrinol; 2011 Feb; 170(3):582-8. PubMed ID: 21118692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.