BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 21214345)

  • 1. Ankle-dorsiflexion range of motion and landing biomechanics.
    Fong CM; Blackburn JT; Norcross MF; McGrath M; Padua DA
    J Athl Train; 2011; 46(1):5-10. PubMed ID: 21214345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability.
    Hoch MC; Farwell KE; Gaven SL; Weinhandl JT
    J Athl Train; 2015 Aug; 50(8):833-9. PubMed ID: 26067428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion.
    Dill KE; Begalle RL; Frank BS; Zinder SM; Padua DA
    J Athl Train; 2014; 49(6):723-32. PubMed ID: 25144599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013; 48(6):764-72. PubMed ID: 24303987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):757-63. PubMed ID: 23944381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):748-56. PubMed ID: 23944382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
    Blackburn JT; Padua DA
    J Athl Train; 2009; 44(2):174-9. PubMed ID: 19295962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricting ankle dorsiflexion does not mitigate the benefits of external focus of attention on landing biomechanics in healthy females.
    Haines M; Murray AM; Glaviano NR; Gokeler A; Norte GE
    Hum Mov Sci; 2020 Dec; 74():102719. PubMed ID: 33232855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.
    Begalle RL; Walsh MC; McGrath ML; Boling MC; Blackburn JT; Padua DA
    J Appl Biomech; 2015 Aug; 31(4):205-10. PubMed ID: 25734492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes.
    Malloy P; Morgan A; Meinerz C; Geiser C; Kipp K
    Knee Surg Sports Traumatol Arthrosc; 2015 Dec; 23(12):3550-5. PubMed ID: 25112598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing.
    Tamura A; Akasaka K; Otsudo T; Shiozawa J; Toda Y; Yamada K
    PLoS One; 2017; 12(6):e0179810. PubMed ID: 28632776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower extremity muscle activation and knee flexion during a jump-landing task.
    Walsh M; Boling MC; McGrath M; Blackburn JT; Padua DA
    J Athl Train; 2012; 47(4):406-13. PubMed ID: 22889656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral Squatting Mechanics Are Associated With Landing Mechanics in Anterior Cruciate Ligament Reconstruction Patients.
    Peebles AT; Williams B; Queen RM
    Am J Sports Med; 2021 Aug; 49(10):2638-2644. PubMed ID: 34236927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restrictions in Ankle Dorsiflexion Range of Motion Alter Landing Kinematics But Not Movement Strategy When Fatigued.
    Howe L; S North J; Waldron M; Bampouras TM
    J Sport Rehabil; 2021 Feb; 30(6):911-919. PubMed ID: 33571960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ankle Dorsiflexion displacement is associated with hip and knee kinematics in females following anterior cruciate ligament reconstruction.
    Stanley LE; Harkey M; Luc-Harkey B; Frank BS; Pietrosimone B; Blackburn JT; Padua DA
    Res Sports Med; 2019; 27(1):21-33. PubMed ID: 30084269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associations Among Eccentric Hamstrings Strength, Hamstrings Stiffness, and Jump-Landing Biomechanics.
    Dewig DR; Goodwin JS; Pietrosimone BG; Blackburn JT
    J Athl Train; 2020 Jul; 55(7):717-723. PubMed ID: 32432902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender differences in frontal and sagittal plane biomechanics during drop landings.
    Kernozek TW; Torry MR; VAN Hoof H; Cowley H; Tanner S
    Med Sci Sports Exerc; 2005 Jun; 37(6):1003-12; discussion 1013. PubMed ID: 15947726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.