These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21214424)

  • 1. Parameters affecting drug release from inert matrices. 1: Monte Carlo simulation.
    Villalobos R; Viquez H; Hernández B; Ganem A; Melgoza LM; Young PM
    Pharm Dev Technol; 2012; 17(3):344-52. PubMed ID: 21214424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations for the study of drug release from cylindrical matrix systems with an inert nucleus.
    Martínez L; Villalobos R; Sánchez M; Cruz J; Ganem A; Melgoza LM
    Int J Pharm; 2009 Mar; 369(1-2):38-46. PubMed ID: 19027839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of drug release from matrices with periodic layers of high and low diffusivity.
    Kosmidis K; Macheras P
    Int J Pharm; 2008 Apr; 354(1-2):111-6. PubMed ID: 18063328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas.
    Kosmidis K; Macheras P
    Int J Pharm; 2007 Oct; 343(1-2):166-72. PubMed ID: 17590294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the drug-excipient ratio in matrix-type-controlled release systems: computer simulation study.
    Villalobos R; Ganem A; Cordero S; Vidales AM; Domínguez A
    Drug Dev Ind Pharm; 2005 Jul; 31(6):535-43. PubMed ID: 16109626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug Release from Inert Spherical Matrix Systems Using Monte Carlo Simulations.
    Villalobos R; Garcia EV; Quintanar D; Young PM
    Curr Drug Deliv; 2017; 14(1):65-72. PubMed ID: 27174175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of critical points of drugs with different solubilities in hydrophilic matrices.
    Fuertes I; Caraballo I; Miranda A; Millán M
    Int J Pharm; 2010 Jan; 383(1-2):138-46. PubMed ID: 19766706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comments concerning: Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas.
    Casault S; Slater GW
    Int J Pharm; 2009 Jan; 365(1-2):214-5. PubMed ID: 18977422
    [No Abstract]   [Full Text] [Related]  

  • 9. Analytical and numerical study of diffusion-controlled drug release from composite spherical matrices.
    Hadjitheodorou A; Kalosakas G
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():681-90. PubMed ID: 25063169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery.
    Miranda A; Millán M; Caraballo I
    Int J Pharm; 2006 Mar; 311(1-2):75-81. PubMed ID: 16446063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories.
    Caraballo I
    Expert Opin Drug Deliv; 2010 Nov; 7(11):1291-301. PubMed ID: 20977292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a rational basis for selection of excipients: Excipient Efficiency for controlled release.
    Casas M; Aguilar-de-Leyva Á; Caraballo I
    Int J Pharm; 2015 Oct; 494(1):288-95. PubMed ID: 26253376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of starch-based pellets by hot-melt extrusion.
    Bialleck S; Rein H
    Eur J Pharm Biopharm; 2011 Oct; 79(2):440-8. PubMed ID: 21570466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug release from a multiparticulate pellet system.
    Zimm KR; Schwartz JB; O'Connor RE
    Pharm Dev Technol; 1996 Apr; 1(1):37-42. PubMed ID: 9552329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets.
    Fuertes I; Miranda A; Millán M; Caraballo I
    Eur J Pharm Biopharm; 2006 Nov; 64(3):336-42. PubMed ID: 16876392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function.
    Kosmidis K; Argyrakis P; Macheras P
    Pharm Res; 2003 Jul; 20(7):988-95. PubMed ID: 12880283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments.
    Güres S; Siepmann F; Siepmann J; Kleinebudde P
    Eur J Pharm Biopharm; 2012 Jan; 80(1):122-9. PubMed ID: 22008146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling weight variability in a pan coating process using Monte Carlo simulations.
    Pandey P; Katakdaunde M; Turton R
    AAPS PharmSciTech; 2006 Oct; 7(4):83. PubMed ID: 17233536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compaction properties, drug release kinetics and fronts movement studies from matrices combining mixtures of swellable and inert polymers. II. Effect of HPMC with different degrees of methoxy/hydroxypropyl substitution.
    Escudero JJ; Ferrero C; Jiménez-Castellanos MR
    Int J Pharm; 2010 Mar; 387(1-2):56-64. PubMed ID: 19969052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.