These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21215612)

  • 1. Generalised additive modelling approach to the fermentation process of glutamate.
    Liu CB; Li Y; Pan F; Shi ZP
    Bioresour Technol; 2011 Mar; 102(5):4184-90. PubMed ID: 21215612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate.
    Liu C; Pan F; Li Y
    Microb Cell Fact; 2016 Jul; 15(1):132. PubMed ID: 27472926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimization of technological condition in the fermentation process of glutamate by pattern recognition method.
    Xu C; Chen C; Wang H; Sun J
    Chin J Biotechnol; 1994; 10(2):105-12. PubMed ID: 7803686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect.
    Tian Y; Kasperski A; Sun K; Chen L
    Biosystems; 2011; 104(2-3):77-86. PubMed ID: 21238534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose].
    Yu BQ; Shen W; Wang ZX; Zhuge J
    Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):270-4. PubMed ID: 16013488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production.
    Li J; Ma C; Ma Y; Li Y; Zhou W; Xu P
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):563-71. PubMed ID: 17119957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate Fermentation-2: Mechanism of L-Glutamate Overproduction in Corynebacterium glutamicum.
    Hirasawa T; Wachi M
    Adv Biochem Eng Biotechnol; 2017; 159():57-72. PubMed ID: 27913829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and optimization of glutamic acid production using mixed culture of Corynebacterium glutamicum NCIM2168 and Pseudomonas reptilivora NCIM2598.
    Kumar RS; Moorthy IM; Baskar R
    Prep Biochem Biotechnol; 2013; 43(7):668-81. PubMed ID: 23768112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.
    Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J
    Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission.
    Chinen A; Kozlov YI; Hara Y; Izui H; Yasueda H
    J Biosci Bioeng; 2007 Mar; 103(3):262-9. PubMed ID: 17434430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of a pH feedback-controlled substrate feeding method in glutamic acid fermentation].
    Xing Y; Zhang L; Cong W; Yue L; Chen C; Ma J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1457-63. PubMed ID: 22260062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of model discriminating experimental design for modeling and development of a fermentative fed-batch L-valine production process.
    Brik Ternbach M; Bollman C; Wandrey C; Takors R
    Biotechnol Bioeng; 2005 Aug; 91(3):356-68. PubMed ID: 15984033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Display of alpha-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch.
    Yao W; Chu C; Deng X; Zhang Y; Liu M; Zheng P; Sun Z
    Arch Microbiol; 2009 Oct; 191(10):751-9. PubMed ID: 19727672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of process variables in industrial acetic fermentation by a continuous pilot fermentor and response surfaces.
    Garrido-Vidal D; Pizarro C; González-Sáiz JM
    Biotechnol Prog; 2003; 19(5):1468-79. PubMed ID: 14524708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of glutamate synthesis and excretion fluxes in batch and continuous cultures of temperature-triggered Corynebacterium glutamicum.
    Uy D; Delaunay S; Goergen JL; Engasser JM
    Bioprocess Biosyst Eng; 2005 May; 27(3):153-62. PubMed ID: 15614534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum.
    Jo SJ; Leong CR; Matsumoto K; Taguchi S
    J Biosci Bioeng; 2009 Apr; 107(4):409-11. PubMed ID: 19332300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural network for the optimization of fed-batch glutamic acid production.
    Miao Z; Zhao L; Yuan Y
    Chin J Biotechnol; 1998; 14(2):125-31. PubMed ID: 10196637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of L-lysine fermentation: a continuous culture model incorporating oxygen uptake rate.
    Ensari S; Lim HC
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):35-40. PubMed ID: 12835919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrospective optimization of time-dependent fermentation control strategies using time-independent historical data.
    Coleman MC; Block DE
    Biotechnol Bioeng; 2006 Oct; 95(3):412-23. PubMed ID: 16894631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.