These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 212164)

  • 21. Nerve growth factor-mediated increase of the substance P content of chick embryo dorsal root ganglia.
    Schwartz JP; Costa E
    Brain Res; 1979 Jul; 170(1):198-202. PubMed ID: 466402
    [No Abstract]   [Full Text] [Related]  

  • 22. Nerve growth factor increases activity of ornithine decarboxylase in superior cervical ganglia of young rats.
    MacDonnell PC; Nagaiah K; Lakshmanan J; Guroff G
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4681-4. PubMed ID: 200929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective de novo synthesis of tyrosine hydroxylase in organ cultures of rat superior cervical ganglia after in vivo administration of nerve growth factor.
    MacDonnell PC; Tolson N; Guroff G
    J Biol Chem; 1977 Aug; 252(16):5859-63. PubMed ID: 18475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na+, K+-ATPase and ouabain binding activities of chick embryo dorsal root ganglia supported by and deprived of nerve growth factor.
    Skaper SD; Varon S
    J Neurosci Res; 1981; 6(1):133-41. PubMed ID: 6260964
    [No Abstract]   [Full Text] [Related]  

  • 25. Nerve growth factor influences sodium ion extrusion from chick embryonic dorsal root ganglionic neurons.
    Skaper SD; Varon S
    Biochem Biophys Res Commun; 1979 May; 88(2):563-8. PubMed ID: 465054
    [No Abstract]   [Full Text] [Related]  

  • 26. Cyclic AMP prevents an increase in GAP-43 but promotes neurite growth in cultured adult rat dorsal root ganglion neurons.
    Andersen PL; Webber CA; Kimura KA; Schreyer DJ
    Exp Neurol; 2000 Nov; 166(1):153-65. PubMed ID: 11031091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacological induction of physiologically active nerve growth factor in rat peripheral nervous system.
    Kaechi K; Furukawa Y; Ikegami R; Nakamura N; Omae F; Hashimoto Y; Hayashi K; Furukawa S
    J Pharmacol Exp Ther; 1993 Jan; 264(1):321-6. PubMed ID: 7678647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphoinositide metabolism in rat superior cervical ganglion, vagus and phrenic nerve: effects of electrical stimulation and various blocking agents.
    White GL; Schellhase HU; Hawthorne JN
    J Neurochem; 1974 Jan; 22(1):149-58. PubMed ID: 4362075
    [No Abstract]   [Full Text] [Related]  

  • 29. Expression and release of phosphatidylinositol anchored cell surface molecules by a cell line derived from sensory neurons.
    Théveniau M; Durbec P; Gennarini G; Wood JN; Rougon G
    J Cell Biochem; 1992 Jan; 48(1):61-72. PubMed ID: 1349892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Demonstration of calcium channels in the somatic membrane of rat spinal ganglia neurons following intracellular dialysis with cyclic adenosine-3', 5'-monophosphate].
    Veselovskiĭ NS; Fedulova SA
    Dokl Akad Nauk SSSR; 1980; 253(6):1493-5. PubMed ID: 6253253
    [No Abstract]   [Full Text] [Related]  

  • 31. Organ culture of rat superior cervical ganglia.
    Brown JH; Nelson DL; Molinoff PB
    J Pharmacol Exp Ther; 1977 May; 201(2):298-311. PubMed ID: 16118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-latency ionic effects of nerve growth factor deprivation and readministration on ganglionic cells.
    Varon S; Skaper SD
    J Supramol Struct; 1980; 13(3):329-37. PubMed ID: 6163039
    [No Abstract]   [Full Text] [Related]  

  • 33. Inhibitory action of adenosine 3',5'-monophosphate on phosphatidylinositol turnover: difference in tissue response.
    Kaibuchi K; Takai Y; Ogawa Y; Kimura S; Nishizuka Y; Nakamura T; Tomomura A; Ichihara A
    Biochem Biophys Res Commun; 1982 Jan; 104(1):105-12. PubMed ID: 6280686
    [No Abstract]   [Full Text] [Related]  

  • 34. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor.
    Rydel RE; Greene LA
    Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1257-61. PubMed ID: 2829221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Autoradiographic study of the incorporation of tritiated uridine in isolated cells of spinal ganglia in culture].
    Ciesielski-Treska J; Sensenbrenner M
    J Physiol (Paris); 1970; 62 Suppl 2(2):261. PubMed ID: 5484144
    [No Abstract]   [Full Text] [Related]  

  • 36. The long-term regulation of tyrosine hydroxylase activity in cultured sympathetic ganglia: role of ganglionic noradrenaline content.
    Mackay AV
    Br J Pharmacol; 1974 Aug; 51(4):509-20. PubMed ID: 4155975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy.
    Rashid K; Van der Zee CE; Ross GM; Chapman CA; Stanisz J; Riopelle RJ; Racine RJ; Fahnestock M
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9495-9. PubMed ID: 7568161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On a possible relationship of cyclic AMP to the mechanism of action of nerve growth factor.
    Haas DC; Hier DB; Arnason GW; Young M
    Proc Soc Exp Biol Med; 1972 May; 140(1):45-7. PubMed ID: 4338186
    [No Abstract]   [Full Text] [Related]  

  • 39. Biosynthetic activities of dorsal root ganglia in vitro and the influence of nerve growth factor.
    Burnham PA; Varon S
    Neurobiology; 1974; 4(2):57-70. PubMed ID: 4134509
    [No Abstract]   [Full Text] [Related]  

  • 40. Location of an isoproterenol-responsive cyclic AMP pool in adrenergic nerve cell bodies and its relationship to tyrosine 3-monooxygenase induction.
    Otten U; Mueller RA; Oesch F; Thoenen H
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2217-21. PubMed ID: 4152247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.