BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21216896)

  • 1. Influence of the host contact sequence on the outcome of competition among aspergillus flavus isolates during host tissue invasion.
    Mehl HL; Cotty PJ
    Appl Environ Microbiol; 2011 Mar; 77(5):1691-7. PubMed ID: 21216896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in competitive ability among isolates of Aspergillus flavus from different vegetative compatibility groups during maize infection.
    Mehl HL; Cotty PJ
    Phytopathology; 2010 Feb; 100(2):150-9. PubMed ID: 20055649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents.
    Alaniz Zanon MS; Clemente MP; Chulze SN
    Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient environments influence competition among Aspergillus flavus genotypes.
    Mehl HL; Cotty PJ
    Appl Environ Microbiol; 2013 Mar; 79(5):1473-80. PubMed ID: 23263958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.
    Gilbert MK; Majumdar R; Rajasekaran K; Chen ZY; Wei Q; Sickler CM; Lebar MD; Cary JW; Frame BR; Wang K
    Planta; 2018 Jun; 247(6):1465-1473. PubMed ID: 29541880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize.
    Camiletti BX; Moral J; Asensio CM; Torrico AK; Lucini EI; Giménez-Pecci MP; Michailides TJ
    Phytopathology; 2018 Jul; 108(7):818-828. PubMed ID: 29384448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of Aflatoxins B
    Maxwell LA; Callicott KA; Bandyopadhyay R; Mehl HL; Orbach MJ; Cotty PJ
    Plant Dis; 2021 Sep; 105(9):2343-2350. PubMed ID: 33754847
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Lanubile A; Giorni P; Bertuzzi T; Marocco A; Battilani P
    Toxins (Basel); 2021 Sep; 13(10):. PubMed ID: 34678972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of an Aspergillus flavus population from maize kernels in northern Italy.
    Mauro A; Battilani P; Callicott KA; Giorni P; Pietri A; Cotty PJ
    Int J Food Microbiol; 2013 Mar; 162(1):1-7. PubMed ID: 23340386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profile and response to maize kernels by Aspergillus flavus.
    Reese BN; Payne GA; Nielsen DM; Woloshuk CP
    Phytopathology; 2011 Jul; 101(7):797-804. PubMed ID: 21341988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological Control of Aflatoxin in Maize Grown in Serbia.
    Savić Z; Dudaš T; Loc M; Grahovac M; Budakov D; Jajić I; Krstović S; Barošević T; Krska R; Sulyok M; Stojšin V; Petreš M; Stankov A; Vukotić J; Bagi F
    Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32150883
    [No Abstract]   [Full Text] [Related]  

  • 12. Intraspecific aflatoxin inhibition in Aspergillus flavus is thigmoregulated, independent of vegetative compatibility group and is strain dependent.
    Huang C; Jha A; Sweany R; DeRobertis C; Damann KE
    PLoS One; 2011; 6(8):e23470. PubMed ID: 21886793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize.
    Atehnkeng J; Ojiambo PS; Ikotun T; Sikora RA; Cotty PJ; Bandyopadhyay R
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Oct; 25(10):1264-71. PubMed ID: 18608502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional profiles uncover Aspergillus flavus-induced resistance in maize kernels.
    Luo M; Brown RL; Chen ZY; Menkir A; Yu J; Bhatnagar D
    Toxins (Basel); 2011 Jul; 3(7):766-86. PubMed ID: 22069739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of Broilers Fed with Maize Colonized by Either Toxigenic or Atoxigenic Strains of
    Aikore MOS; Ortega-Beltran A; Eruvbetine D; Atehnkeng J; Falade TDO; Cotty PJ; Bandyopadhyay R
    Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31561495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between in vivo and in vitro aflatoxin production: reliable prediction of fungal ability to contaminate maize with aflatoxins.
    Probst C; Cotty PJ
    Fungal Biol; 2012 Apr; 116(4):503-10. PubMed ID: 22483048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation.
    Pechanova O; Pechan T; Williams WP; Luthe DS
    Proteomics; 2011 Jan; 11(1):114-27. PubMed ID: 21182199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182.
    Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW
    Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic
    Hruska Z; Yao H; Kincaid R; Brown RL; Bhatnagar D; Cleveland TE
    Front Microbiol; 2017; 8():1718. PubMed ID: 28966606
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Antiga L; La Starza SR; Miccoli C; D'Angeli S; Scala V; Zaccaria M; Shu X; Obrian G; Beccaccioli M; Payne GA; Reverberi M
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33153018
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.