These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21216908)

  • 21. Comparison of sampling methods to recover germinated Bacillus anthracis and Bacillus thuringiensis endospores from surface coupons.
    Mott TM; Shoe JL; Hunter M; Woodson AM; Fritts KA; Klimko CP; Quirk AV; Welkos SL; Cote CK
    J Appl Microbiol; 2017 May; 122(5):1219-1232. PubMed ID: 28191745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of two surface sampling methods for the detection of Bacillus atrophaeus aerosolized in a test chamber.
    Buttner MP; Cruz P; Detrick E; Gunter J; Medley S
    J Microbiol Methods; 2022 Jul; 198():106507. PubMed ID: 35649458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid filtration separation-based sample preparation method for Bacillus spores in powdery and environmental matrices.
    Isabel S; Boissinot M; Charlebois I; Fauvel CM; Shi LE; Lévesque JC; Paquin AT; Bastien M; Stewart G; Leblanc E; Sato S; Bergeron MG
    Appl Environ Microbiol; 2012 Mar; 78(5):1505-12. PubMed ID: 22210204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swab materials and Bacillus anthracis spore recovery from nonporous surfaces.
    Rose L; Jensen B; Peterson A; Banerjee SN; Srduino MJ
    Emerg Infect Dis; 2004 Jun; 10(6):1023-9. PubMed ID: 15207053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol.
    Weerasekara ML; Ryuda N; Miyamoto H; Okumura T; Ueno D; Inoue K; Someya T
    J Microbiol Methods; 2013 Jun; 93(3):177-84. PubMed ID: 23523967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean Spacecraft Assembly Facility.
    Link L; Sawyer J; Venkateswaran K; Nicholson W
    Microb Ecol; 2004 Feb; 47(2):159-63. PubMed ID: 14502417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates.
    Kane SR; Létant SE; Murphy GA; Alfaro TM; Krauter PW; Mahnke R; Legler TC; Raber E
    J Microbiol Methods; 2009 Mar; 76(3):278-84. PubMed ID: 19141303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of vacuum filter sock surface sample collection method for Bacillus spores from porous and non-porous surfaces.
    Brown GS; Betty RG; Brockmann JE; Lucero DA; Souza CA; Walsh KS; Boucher RM; Tezak MS; Wilson MC
    J Environ Monit; 2007 Jul; 9(7):666-71. PubMed ID: 17607386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virulent spores of Bacillus anthracis and other Bacillus species deposited on solid surfaces have similar sensitivity to chemical decontaminants.
    Sagripanti JL; Carrera M; Insalaco J; Ziemski M; Rogers J; Zandomeni R
    J Appl Microbiol; 2007 Jan; 102(1):11-21. PubMed ID: 17184315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture.
    Hutchison JR; Piepel GF; Amidan BG; Hess BM; Sydor MA; Deatherage Kaiser BL
    J Appl Microbiol; 2018 May; 124(5):1092-1106. PubMed ID: 29356220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ground Anthrax Bacillus Refined Isolation (GABRI) method for analyzing environmental samples with low levels of Bacillus anthracis contamination.
    Fasanella A; Di Taranto P; Garofolo G; Colao V; Marino L; Buonavoglia D; Pedarra C; Adone R; Hugh-Jones M
    BMC Microbiol; 2013 Jul; 13():167. PubMed ID: 23865983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.
    Estill CF; Baron PA; Beard JK; Hein MJ; Larsen LD; Rose L; Schaefer FW; Noble-Wang J; Hodges L; Lindquist HD; Deye GJ; Arduino MJ
    Appl Environ Microbiol; 2009 Jul; 75(13):4297-306. PubMed ID: 19429546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a rapid and sensitive immunoassay for detection and subsequent recovery of Bacillus anthracis spores in environmental samples.
    Hang J; Sundaram AK; Zhu P; Shelton DR; Karns JS; Martin PA; Li S; Amstutz P; Tang CM
    J Microbiol Methods; 2008 Jun; 73(3):242-6. PubMed ID: 18395279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved recovery of Bacillus spores from nonporous surfaces with cotton swabs over foam, nylon, or polyester, and the role of hydrophilicity of cotton in governing the recovery efficiency.
    Thomas P; Mujawar MM; Upreti R; Sekhar AC
    Appl Environ Microbiol; 2013 Jan; 79(1):381-4. PubMed ID: 23087040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Difference between the spore sizes of Bacillus anthracis and other Bacillus species.
    Carrera M; Zandomeni RO; Fitzgibbon J; Sagripanti JL
    J Appl Microbiol; 2007 Feb; 102(2):303-12. PubMed ID: 17241334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility.
    La Duc MT; Nicholson W; Kern R; Venkateswaran K
    Environ Microbiol; 2003 Oct; 5(10):977-85. PubMed ID: 14510851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility.
    Khodadad CL; Wong GM; James LM; Thakrar PJ; Lane MA; Catechis JA; Smith DJ
    Astrobiology; 2017 Apr; 17(4):337-350. PubMed ID: 28323456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods.
    Bauermeister A; Mahnert A; Auerbach A; Böker A; Flier N; Weber C; Probst AJ; Moissl-Eichinger C; Haberer K
    PLoS One; 2014; 9(4):e94265. PubMed ID: 24736730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A rapid and repeatable method to deposit bioaerosols on material surfaces.
    Calfee MW; Lee SD; Ryan SP
    J Microbiol Methods; 2013 Mar; 92(3):375-80. PubMed ID: 23384827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.
    Vaishampayan PA; Rabbow E; Horneck G; Venkateswaran KJ
    Astrobiology; 2012 May; 12(5):487-97. PubMed ID: 22680694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.