BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21218120)

  • 21. Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis.
    Jiang Y; Wen J; Lan L; Hu Z
    Biodegradation; 2007 Dec; 18(6):719-29. PubMed ID: 17245562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and Characterization of Acinetobacter sp. CNU961 Able to Grow with Phenol at High Concentrations.
    Jeong KC; Jeong EY; Hwang TE; Choi SH
    Biosci Biotechnol Biochem; 1998; 62(9):1830-3. PubMed ID: 27392693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1.
    Kim SI; Song SY; Kim KW; Ho EM; Oh KH
    Res Microbiol; 2003 Dec; 154(10):697-703. PubMed ID: 14643408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multistage bubble column.
    Ruiz-Ordaz N; Ruiz-Lagunez JC; Castañon-González JH; Hernández-Manzano E; Cristiani-Urbina E; Galíndez-Mayer J
    Rev Latinoam Microbiol; 2001; 43(1):19-25. PubMed ID: 17061568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250.
    Ehrt S; Schirmer F; Hillen W
    Mol Microbiol; 1995 Oct; 18(1):13-20. PubMed ID: 8596453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of phenol via ortho-pathway by Kocuria sp. strain TIBETAN4 isolated from the soils around Qinghai Lake in China.
    Wu L; Ali DC; Liu P; Peng C; Zhai J; Wang Y; Ye B
    PLoS One; 2018; 13(6):e0199572. PubMed ID: 29949643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of four novel Gram-positive bacteria associated with the rhizosphere of two endemorelict plants capable of degrading a broad range of aromatic substrates.
    Djokic L; Narancic T; Nikodinovic-Runic J; Savic M; Vasiljevic B
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1227-38. PubMed ID: 21706169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradation of phenol by Antarctic strains of Aspergillus fumigatus.
    Gerginova M; Manasiev J; Yemendzhiev H; Terziyska A; Peneva N; Alexieva Z
    Z Naturforsch C J Biosci; 2013; 68(9-10):384-93. PubMed ID: 24459772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel phenol hydroxylase and catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans strain A2: nucleotide sequence and analysis of the genes.
    Duffner FM; Müller R
    FEMS Microbiol Lett; 1998 Apr; 161(1):37-45. PubMed ID: 9561730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acinetobacter radioresistens metabolizing aromatic compounds. 2. Biochemical and microbiological characterization of the strain.
    Pessione E; Giunta C
    Microbios; 1997; 89(359):105-17. PubMed ID: 9237384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities.
    Sandhu A; Halverson LJ; Beattie GA
    Microb Ecol; 2009 Feb; 57(2):276-85. PubMed ID: 19034559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpression, Purification and Characterization of Thermostable Catechol 2,3-dioxygenase.
    Zhang W; Yin CC; Zheng ZH; Cai ZL; Xia Q; Mao YM
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 1998; 30(6):579-584. PubMed ID: 12167992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of phenol-degrading yeasts from an oil refinery wastewater in Brazil.
    Rocha LL; de Aguiar Cordeiro R; Cavalcante RM; do Nascimento RF; Martins SC; Santaella ST; Melo VM
    Mycopathologia; 2007 Oct; 164(4):183-8. PubMed ID: 17674140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenol degradation by Acinetobacter calcoaceticus NCIB 8250.
    Paller G; Hommel RK; Kleber HP
    J Basic Microbiol; 1995; 35(5):325-35. PubMed ID: 8568644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium,
    Lee GLY; Zakaria NN; Convey P; Futamata H; Zulkharnain A; Suzuki K; Abdul Khalil K; Shaharuddin NA; Alias SA; González-Rocha G; Ahmad SA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33316871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts.
    Margesin R; Gander S; Zacke G; Gounot AM; Schinner F
    Extremophiles; 2003 Dec; 7(6):451-8. PubMed ID: 12942349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He-Ne laser irradiation.
    Jiang Y; Wen J; Caiyin Q; Lin L; Hu Z
    Chemosphere; 2006 Nov; 65(7):1236-41. PubMed ID: 16730779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.