These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21218175)

  • 1. Detecting disease-specific patterns of brain structure using cortical pattern matching and a population-based probabilistic brain atlas.
    Thompson PM; Mega MS; Vidal C; Rapoport JL; Toga AW
    Inf Process Med Imaging; 2001; 2082():488-501. PubMed ID: 21218175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maps of the brain.
    Toga AW; Thompson PM
    Anat Rec; 2001 Apr; 265(2):37-53. PubMed ID: 11323769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease-Specific Probabilistic Brain Atlases.
    Thompson P; Mega MS; Toga AW
    Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit; 2000 Jun; 2000():227-234. PubMed ID: 19424457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain.
    Thompson PM; Woods RP; Mega MS; Toga AW
    Hum Brain Mapp; 2000 Feb; 9(2):81-92. PubMed ID: 10680765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DETECTING DYNAMIC AND GENETIC EFFECTS ON BRAIN STRUCTURE USING HIGH-DIMENSIONAL CORTICAL PATTERN MATCHING.
    Thompson PM; Hayashi KM; de Zubicaray G; Janke AL; Rose SE; Semple J; Doddrell DM; Cannon TD; Toga AW
    Proc IEEE Int Symp Biomed Imaging; 2002 Jan; 2002():473-476. PubMed ID: 19759832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces.
    Thompson PM; MacDonald D; Mega MS; Holmes CJ; Evans AC; Toga AW
    J Comput Assist Tomogr; 1997; 21(4):567-81. PubMed ID: 9216760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia.
    Thompson PM; Hayashi KM; Sowell ER; Gogtay N; Giedd JN; Rapoport JL; de Zubicaray GI; Janke AL; Rose SE; Semple J; Doddrell DM; Wang Y; van Erp TG; Cannon TD; Toga AW
    Neuroimage; 2004; 23 Suppl 1():S2-18. PubMed ID: 15501091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations.
    Thompson PM; Toga AW
    Med Image Anal; 1997 Sep; 1(4):271-94. PubMed ID: 9873911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas.
    Thompson PM; Mega MS; Woods RP; Zoumalan CI; Lindshield CJ; Blanton RE; Moussai J; Holmes CJ; Cummings JL; Toga AW
    Cereb Cortex; 2001 Jan; 11(1):1-16. PubMed ID: 11113031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.
    Li G; Wang L; Shi F; Gilmore JH; Lin W; Shen D
    Med Image Anal; 2015 Oct; 25(1):22-36. PubMed ID: 25980388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images.
    Ribbens A; Hermans J; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2014 Feb; 33(2):201-24. PubMed ID: 23797244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution random mesh algorithms for creating a probabilistic 3D surface atlas of the human brain.
    Thompson PM; Schwartz C; Toga AW
    Neuroimage; 1996 Feb; 3(1):19-34. PubMed ID: 9345472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Registration.
    Joshi AA
    Neuromethods; 2018; 136():3-12. PubMed ID: 30842692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines.
    Fillard P; Arsigny V; Pennec X; Hayashi KM; Thompson PM; Ayache N
    Neuroimage; 2007 Jan; 34(2):639-50. PubMed ID: 17113311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint segmentation of image ensembles via latent atlases.
    Raviv TR; Van Leemput K; Wells WM; Golland P
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):272-80. PubMed ID: 20425997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mindboggle: automated brain labeling with multiple atlases.
    Klein A; Mensh B; Ghosh S; Tourville J; Hirsch J
    BMC Med Imaging; 2005 Oct; 5():7. PubMed ID: 16202176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic approaches for atlasing normal and disease-specific brain variability.
    Toga AW; Thompson PM; Mega MS; Narr KL; Blanton RE
    Anat Embryol (Berl); 2001 Oct; 204(4):267-82. PubMed ID: 11720233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical variability and asymmetry in normal aging and Alzheimer's disease.
    Thompson PM; Moussai J; Zohoori S; Goldkorn A; Khan AA; Mega MS; Small GW; Cummings JL; Toga AW
    Cereb Cortex; 1998 Sep; 8(6):492-509. PubMed ID: 9758213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patch-based group-wise sparse representation.
    Wu Z; Wang L; Lin W; Gilmore JH; Li G; Shen D
    Hum Brain Mapp; 2019 Sep; 40(13):3860-3880. PubMed ID: 31115143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Julich-Brain: A 3D probabilistic atlas of the human brain's cytoarchitecture.
    Amunts K; Mohlberg H; Bludau S; Zilles K
    Science; 2020 Aug; 369(6506):988-992. PubMed ID: 32732281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.