These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 21218322)

  • 1. Obstacle crossing with lower visual field restriction: shifts in strategy.
    Jansen SE; Toet A; Werkhoven PJ
    J Mot Behav; 2011; 43(1):55-62. PubMed ID: 21218322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utility of peripheral visual cues in planning and controlling adaptive gait.
    Graci V; Elliott DB; Buckley JG
    Optom Vis Sci; 2010 Jan; 87(1):21-7. PubMed ID: 19918210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it.
    Timmis MA; Buckley JG
    Gait Posture; 2012 May; 36(1):160-2. PubMed ID: 22424759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral visual cues affect minimum-foot-clearance during overground locomotion.
    Graci V; Elliott DB; Buckley JG
    Gait Posture; 2009 Oct; 30(3):370-4. PubMed ID: 19628392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepping over obstacles: attention demands and aging.
    Harley C; Wilkie RM; Wann JP
    Gait Posture; 2009 Apr; 29(3):428-32. PubMed ID: 19084412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes to control of adaptive gait in individuals with long-standing reduced stereoacuity.
    Buckley JG; Panesar GK; MacLellan MJ; Pacey IE; Barrett BT
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2487-95. PubMed ID: 20335609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of field-of-view restriction on manoeuvring in a 3-D environment.
    Toet A; Jansen SE; Delleman NJ
    Ergonomics; 2008 Mar; 51(3):385-94. PubMed ID: 18311613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of anterior load carriage on lower limb gait parameters during obstacle clearance.
    Perry CJ; Kiriella JB; Hawkins KM; Shanahan CJ; Moore AE; Gage WH
    Gait Posture; 2010 May; 32(1):57-61. PubMed ID: 20382021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obstacle crossing in people with Parkinson's disease: foot clearance and spatiotemporal deficits.
    Galna B; Murphy AT; Morris ME
    Hum Mov Sci; 2010 Oct; 29(5):843-52. PubMed ID: 19962206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepping over obstacles of different heights: kinematic and kinetic strategies of leading limb in hemiplegic children.
    Petrarca M; Di Rosa G; Cappa P; Patanè F
    Gait Posture; 2006 Nov; 24(3):331-41. PubMed ID: 16359868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotion through a complex environment with limited field-of-view.
    Toet A; Kahrimanović M; Delleman NJ
    Percept Mot Skills; 2008 Dec; 107(3):811-26. PubMed ID: 19235410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetrical kinematic changes in highly functioning older patients post-stroke during obstacle-crossing.
    Lu TW; Yen HC; Chen HL; Hsu WC; Chen SC; Hong SW; Jeng JS
    Gait Posture; 2010 Apr; 31(4):511-6. PubMed ID: 20299223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human locomotion through a multiple obstacle environment: strategy changes as a result of visual field limitation.
    Jansen SE; Toet A; Werkhoven PJ
    Exp Brain Res; 2011 Jul; 212(3):449-56. PubMed ID: 21687987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights.
    Lu TW; Chen HL; Chen SC
    Gait Posture; 2006 Jun; 23(4):471-9. PubMed ID: 16023346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patients with type II diabetes mellitus display reduced toe-obstacle clearance with altered gait patterns during obstacle-crossing.
    Liu MW; Hsu WC; Lu TW; Chen HL; Liu HC
    Gait Posture; 2010 Jan; 31(1):93-9. PubMed ID: 19875290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balance problems during obstacle crossing in children with Developmental Coordination Disorder.
    Deconinck FJ; Savelsbergh GJ; De Clercq D; Lenoir M
    Gait Posture; 2010 Jul; 32(3):327-31. PubMed ID: 20580557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis.
    Chen HL; Lu TW; Wang TM; Huang SC
    J Biomech; 2008; 41(4):753-61. PubMed ID: 18177877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.