These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21218485)

  • 41. Contribution of skin and stone to texture measurements of spherical model fruits.
    Rosenthal AJ; Lacresse A; Voyer E
    J Texture Stud; 2018 Feb; 49(1):23-29. PubMed ID: 29205395
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extraction kinetics of anthocyanins from skin to pulp during carbonic maceration of winegrape berries with different ripeness levels.
    Pace C; Giacosa S; Torchio F; Río Segade S; Cagnasso E; Rolle L
    Food Chem; 2014 Dec; 165():77-84. PubMed ID: 25038651
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximénez grape variety.
    Franco M; Peinado RA; Medina M; Moreno J
    J Agric Food Chem; 2004 Jun; 52(12):3905-10. PubMed ID: 15186115
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of the winemaking process on the elemental composition of the Marselan red wine.
    Dos Santos CE; Debastiani R; Souza VS; Peretti DE; Jobim PF; Yoneama ML; Amaral L; Dias JF
    J Sci Food Agric; 2019 Aug; 99(10):4642-4650. PubMed ID: 30895630
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential application of a glucose-transport-deficient mutant of Schizosaccharomyces pombe for removing gluconic acid from grape must.
    Peinado RA; Moreno JJ; Medina M; Mauricio JC
    J Agric Food Chem; 2005 Feb; 53(4):1017-21. PubMed ID: 15713014
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Varietal relationship between instrumental skin hardness and climate for grapevines (Vitis vinifera L.).
    Rolle L; Gerbi V; Schneider A; Spanna F; Río Segade S
    J Agric Food Chem; 2011 Oct; 59(19):10624-34. PubMed ID: 21861480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of the maceration technique on the relationships between anthocyanin composition and objective color of Syrah wines.
    Gómez-Míguez M; Heredia FJ
    J Agric Food Chem; 2004 Aug; 52(16):5117-23. PubMed ID: 15291484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-vine withering process of 'Moscato bianco' grapes: effect of cane-cut system on volatile composition.
    Giacosa S; Giordano M; Vilanova M; Cagnasso E; Río Segade S; Rolle L
    J Sci Food Agric; 2019 Feb; 99(3):1135-1144. PubMed ID: 30047150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GC-ITMS determination and degradation of captan during winemaking.
    Angioni A; Garau VL; Aguilera Del Real A; Melis M; Minelli EV; Tuberoso C; Cabras P
    J Agric Food Chem; 2003 Nov; 51(23):6761-6. PubMed ID: 14582972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification.
    Bindon KA; Smith PA; Holt H; Kennedy JA
    J Agric Food Chem; 2010 Oct; 58(19):10736-46. PubMed ID: 20845924
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Postharvest dehydration induces variable changes in the primary metabolism of grape berries.
    Conde A; Soares F; Breia R; Gerós H
    Food Res Int; 2018 Mar; 105():261-270. PubMed ID: 29433214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ochratoxigenic species from Spanish wine grapes.
    Bau M; Bragulat MR; Abarca ML; Minguez S; Cabañes FJ
    Int J Food Microbiol; 2005 Feb; 98(2):125-30. PubMed ID: 15681040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lead contamination in Portuguese red wines from the Douro region: from the vineyard to the final product.
    Almeida CM; Vasconcelos MT
    J Agric Food Chem; 2003 May; 51(10):3012-23. PubMed ID: 12720385
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of Pear Variety and Drying Methods on the Quality of Dried Fruit.
    Marzec A; Kowalska H; Kowalska J; Domian E; Lenart A
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33167405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties.
    Rolle L; Giordano M; Giacosa S; Vincenzi S; Río Segade S; Torchio F; Perrone B; Gerbi V
    Anal Chim Acta; 2012 Jun; 732():105-13. PubMed ID: 22688041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.
    Fernández K; Kennedy JA; Agosin E
    J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Residues of spiroxamine in grapes following field application and their fate from vine to wine.
    Tsiropoulos NG; Miliadis GE; Likas DT; Liapis K
    J Agric Food Chem; 2005 Dec; 53(26):10091-6. PubMed ID: 16366700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tartaric acid recovery from distilled lees and use of the residual solid as an economic nutrient for lactobacillus.
    Rivas B; Torrado A; Moldes AB; Domínguez JM
    J Agric Food Chem; 2006 Oct; 54(20):7904-11. PubMed ID: 17002469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The influence of berry perforation on grape drying kinetics and total phenolic compounds.
    Martín-Gómez J; Ángeles Varo M; Mérida J; Serratosa MP
    J Sci Food Agric; 2019 Jul; 99(9):4260-4266. PubMed ID: 30801722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.