BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21218776)

  • 1. Amplitude spectrum of structural fluctuations in proteins from the internal diffusion of solutes of increasing molecular size: a Trp phosphorescence quenching study.
    Strambini GB; Gonnelli M
    Biochemistry; 2011 Feb; 50(6):970-80. PubMed ID: 21218776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of denaturants on native-state structural fluctuations in azurin probed by molecular size-dependent quenching of Trp phosphorescence.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2011 Nov; 115(46):13755-64. PubMed ID: 21992656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylamide quenching of Trp phosphorescence in liver alcohol dehydrogenase: evidence of gated quencher penetration.
    Strambini GB; Gonnelli M
    Biochemistry; 2009 Aug; 48(31):7482-91. PubMed ID: 19594170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure/temperature effects on protein flexibilty from acrylamide quenching of protein phosphorescence.
    Cioni P; Strambini GB
    J Mol Biol; 1999 Aug; 291(4):955-64. PubMed ID: 10452899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein phosphorescence quenching: distinction between quencher penetration and external quenching mechanisms.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jul; 114(29):9691-7. PubMed ID: 20597520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence quenching of buried Trp residues by acrylamide does not require penetration of the protein fold.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jan; 114(2):1089-93. PubMed ID: 19924836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins.
    Gonnelli M; Strambini GB
    Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cavity-forming mutations on the internal dynamics of azurin.
    Cioni P; de Waal E; Canters GW; Strambini GB
    Biophys J; 2004 Feb; 86(2):1149-59. PubMed ID: 14747349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No effect of covalently linked poly(ethylene glycol) chains on protein internal dynamics.
    Gonnelli M; Strambini GB
    Biochim Biophys Acta; 2009 Mar; 1794(3):569-76. PubMed ID: 19150514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol effects on protein flexibility: a tryptophan phosphorescence study.
    Gonnelli M; Strambini GB
    Biophys J; 1993 Jul; 65(1):131-7. PubMed ID: 8369422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of proteins encapsulated in silica hydrogels by Trp phosphorescence.
    Gonnelli M; Strambini GB
    Biophys Chem; 2003 May; 104(1):155-69. PubMed ID: 12834835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of cold-adapted enzymes as investigated by phosphorescence spectroscopy and molecular dynamics studies. 2. The case of an esterase from Pseudoalteromonas haloplanktis.
    D'Auria S; Aurilia V; Marabotti A; Gonnelli M; Strambini G
    J Phys Chem B; 2009 Oct; 113(40):13171-8. PubMed ID: 19754077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen and acrylamide quenching of protein phosphorescence: correlation with protein dynamics.
    Cioni P
    Biophys Chem; 2000 Sep; 87(1):15-24. PubMed ID: 11036966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylonitrile quenching of trp phosphorescence in proteins: a probe of the internal flexibility of the globular fold.
    Strambini GB; Gonnelli M
    Biophys J; 2010 Aug; 99(3):944-52. PubMed ID: 20682273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in proteins induced by dynamic associations. A tryptophan phosphorescence study.
    Gabellieri E; Strambini GB
    Eur J Biochem; 1994 Apr; 221(1):77-85. PubMed ID: 8168551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic features of the subunit interface of Cu,Zn superoxide dismutase as probed by tryptophan phosphorescence.
    Cioni P; Stroppolo ME; Desideri A; Strambini GB
    Arch Biochem Biophys; 2001 Jul; 391(1):111-8. PubMed ID: 11414691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface.
    Strasser F; Dey J; Eftink MR; Plapp BV
    Arch Biochem Biophys; 1998 Oct; 358(2):369-76. PubMed ID: 9784252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heavy water on protein flexibility.
    Cioni P; Strambini GB
    Biophys J; 2002 Jun; 82(6):3246-53. PubMed ID: 12023248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of tryptophan phosphorescence in proteins.
    Strambini GB; Gabellieri E
    Photochem Photobiol; 1990 Jun; 51(6):643-8. PubMed ID: 2195561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.