BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21219036)

  • 1. Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth.
    Zander NE; Orlicki JA; Rawlett AM; Beebe TP
    Biointerphases; 2010 Dec; 5(4):149-58. PubMed ID: 21219036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.
    McMurtrey RJ
    J Neural Eng; 2014 Dec; 11(6):066009. PubMed ID: 25358624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS; Yong T; Chan CK; Ramakrishna S
    Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic poly(serinol hexamethylene urea) for promotion of neurite outgrowth and guidance.
    Yun D; Famili A; Lee YM; Jenkins PM; Freed CR; Park D
    J Biomater Sci Polym Ed; 2014; 25(4):354-69. PubMed ID: 24279744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilized laminin concentration gradients on electrospun fiber scaffolds for controlled neurite outgrowth.
    Zander NE; Beebe TP
    Biointerphases; 2014 Mar; 9(1):011003. PubMed ID: 24739010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation.
    Wang J; Tian L; Chen N; Ramakrishna S; Mo X
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesive proteins linked with focal adhesion kinase regulate neurite outgrowth of PC12 cells.
    Lee JH; Lee HY; Kim HW
    Acta Biomater; 2012 Jan; 8(1):165-72. PubMed ID: 21911085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of laminin peptide gradient in enzymatically cross-linked collagen scaffolds on neurite growth.
    Yao L; Damodaran G; Nikolskaya N; Gorman AM; Windebank A; Pandit A
    J Biomed Mater Res A; 2010 Feb; 92(2):484-92. PubMed ID: 19213056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro/nanofibrous scaffolds electrospun from PCL and small intestinal submucosa.
    Yoon H; Kim G
    J Biomater Sci Polym Ed; 2010; 21(5):553-62. PubMed ID: 20338091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells.
    Wang J; Ye R; Wei Y; Wang H; Xu X; Zhang F; Qu J; Zuo B; Zhang H
    J Biomed Mater Res A; 2012 Mar; 100(3):632-45. PubMed ID: 22213384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.