These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 21219468)
41. The Cyclic AMP Receptor Protein Regulates Quorum Sensing and Global Gene Expression in Yersinia pestis during Planktonic Growth and Growth in Biofilms. Ritzert JT; Minasov G; Embry R; Schipma MJ; Satchell KJF mBio; 2019 Nov; 10(6):. PubMed ID: 31744922 [TBL] [Abstract][Full Text] [Related]
42. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation. Fagerlund A; Smith V; Røhr ÅK; Lindbäck T; Parmer MP; Andersson KK; Reubsaet L; Økstad OA Mol Microbiol; 2016 Aug; 101(3):471-94. PubMed ID: 27116468 [TBL] [Abstract][Full Text] [Related]
43. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence. Felek S; Jeong JJ; Runco LM; Murray S; Thanassi DG; Krukonis ES Microbiology (Reading); 2011 Mar; 157(Pt 3):805-818. PubMed ID: 21088108 [TBL] [Abstract][Full Text] [Related]
44. Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae. Heo K; Park YH; Lee KA; Kim J; Ham HI; Kim BG; Lee WJ; Seok YJ Nat Commun; 2019 Nov; 10(1):5358. PubMed ID: 31767877 [TBL] [Abstract][Full Text] [Related]
45. Comparative Lysine Acetylome Analysis of Y. pestis YfiQ/CobB Mutants Reveals that Acetylation of SlyA Lys73 Significantly Promotes Biofilm Formation of Y. pestis. Tan Y; Liu W; Chen Y; Zhou Y; Song K; Cao S; Zhang Y; Song Y; Deng H; Yang R; Du Z Microbiol Spectr; 2023 Aug; 11(4):e0046023. PubMed ID: 37458592 [TBL] [Abstract][Full Text] [Related]
46. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Bobrov AG; Kirillina O; Forman S; Mack D; Perry RD Environ Microbiol; 2008 Jun; 10(6):1419-32. PubMed ID: 18279344 [TBL] [Abstract][Full Text] [Related]
47. The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Chen HJ; Li N; Luo Y; Jiang YL; Zhou CZ; Chen Y; Li Q Biochem J; 2018 Apr; 475(7):1295-1308. PubMed ID: 29555845 [TBL] [Abstract][Full Text] [Related]
48. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Kulasakara H; Lee V; Brencic A; Liberati N; Urbach J; Miyata S; Lee DG; Neely AN; Hyodo M; Hayakawa Y; Ausubel FM; Lory S Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2839-44. PubMed ID: 16477007 [TBL] [Abstract][Full Text] [Related]
49. Clearance of Pseudomonas aeruginosa foreign-body biofilm infections through reduction of the cyclic Di-GMP level in the bacteria. Christensen LD; van Gennip M; Rybtke MT; Wu H; Chiang WC; Alhede M; Høiby N; Nielsen TE; Givskov M; Tolker-Nielsen T Infect Immun; 2013 Aug; 81(8):2705-13. PubMed ID: 23690403 [TBL] [Abstract][Full Text] [Related]
50. Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation. Xue D; Tian F; Yang F; Chen H; Yuan X; Yang CH; Chen Y; Wang Q; He C Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217836 [TBL] [Abstract][Full Text] [Related]
51. Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague. Sha J; Agar SL; Baze WB; Olano JP; Fadl AA; Erova TE; Wang S; Foltz SM; Suarez G; Motin VL; Chauhan S; Klimpel GR; Peterson JW; Chopra AK Infect Immun; 2008 Apr; 76(4):1390-409. PubMed ID: 18227160 [TBL] [Abstract][Full Text] [Related]
52. Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Liu N; Xu Y; Hossain S; Huang N; Coursolle D; Gralnick JA; Boon EM Biochemistry; 2012 Mar; 51(10):2087-99. PubMed ID: 22360279 [TBL] [Abstract][Full Text] [Related]
53. Inactivation of cyclic Di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola. Bian J; Liu X; Cheng YQ; Li C J Bacteriol; 2013 Sep; 195(17):3897-905. PubMed ID: 23794624 [TBL] [Abstract][Full Text] [Related]
54. Cyclic Diguanylate Regulates Virulence Factor Genes via Multiple Riboswitches in McKee RW; Harvest CK; Tamayo R mSphere; 2018 Oct; 3(5):. PubMed ID: 30355665 [TBL] [Abstract][Full Text] [Related]
55. Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. Erickson DL; Jarrett CO; Callison JA; Fischer ER; Hinnebusch BJ J Bacteriol; 2008 Dec; 190(24):8163-70. PubMed ID: 18931111 [TBL] [Abstract][Full Text] [Related]
56. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. Derbise A; Pierre F; Merchez M; Pradel E; Laouami S; Ricard I; Sirard JC; Fritz J; Lemaître N; Akinbi H; Boneca IG; Sebbane F J Infect Dis; 2013 May; 207(10):1535-43. PubMed ID: 23402825 [TBL] [Abstract][Full Text] [Related]
57. Nlp enhances biofilm formation by Yersinia pestis biovar microtus. Liu L; He Y; Yang H; Liu W; Zheng S; Qi Y; Zhou D; Zhang Y; Yin Z Microb Pathog; 2022 Aug; 169():105659. PubMed ID: 35760284 [TBL] [Abstract][Full Text] [Related]
58. Stand-Alone EAL Domain Proteins Form a Distinct Subclass of EAL Proteins Involved in Regulation of Cell Motility and Biofilm Formation in Enterobacteria. El Mouali Y; Kim H; Ahmad I; Brauner A; Liu Y; Skurnik M; Galperin MY; Römling U J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28652301 [TBL] [Abstract][Full Text] [Related]
59. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi. Novak EA; Sultan SZ; Motaleb MA Front Cell Infect Microbiol; 2014; 4():56. PubMed ID: 24822172 [TBL] [Abstract][Full Text] [Related]
60. Targeting cyclic di-GMP signalling: a strategy to control biofilm formation? Caly DL; Bellini D; Walsh MA; Dow JM; Ryan RP Curr Pharm Des; 2015; 21(1):12-24. PubMed ID: 25189859 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]