These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21219507)

  • 1. Multiple light inputs to a simple clock circuit allow complex biological rhythms.
    Troein C; Corellou F; Dixon LE; van Ooijen G; O'Neill JS; Bouget FY; Millar AJ
    Plant J; 2011 Apr; 66(2):375-85. PubMed ID: 21219507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus.
    Corellou F; Schwartz C; Motta JP; Djouani-Tahri el B; Sanchez F; Bouget FY
    Plant Cell; 2009 Nov; 21(11):3436-49. PubMed ID: 19948792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust and flexible response of the Ostreococcus tauri circadian clock to light/dark cycles of varying photoperiod.
    Thommen Q; Pfeuty B; Corellou F; Bouget FY; Lefranc M
    FEBS J; 2012 Sep; 279(18):3432-48. PubMed ID: 22712559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light and circadian regulation of clock components aids flexible responses to environmental signals.
    Dixon LE; Hodge SK; van Ooijen G; Troein C; Akman OE; Millar AJ
    New Phytol; 2014 Jul; 203(2):568-577. PubMed ID: 24842166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock.
    Morant PE; Thommen Q; Pfeuty B; Vandermoere C; Corellou F; Bouget FY; Lefranc M
    Chaos; 2010 Dec; 20(4):045108. PubMed ID: 21198120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs.
    Pokhilko A; Mas P; Millar AJ
    BMC Syst Biol; 2013 Mar; 7():23. PubMed ID: 23506153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian clocks in changing weather and seasons: lessons from the picoalga Ostreococcus tauri.
    Pfeuty B; Thommen Q; Corellou F; Djouani-Tahri el B; Bouget FY; Lefranc M
    Bioessays; 2012 Sep; 34(9):781-90. PubMed ID: 22806346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional versus non-transcriptional clocks: a case study in Ostreococcus.
    Bouget FY; Lefranc M; Thommen Q; Pfeuty B; Lozano JC; Schatt P; Botebol H; Vergé V
    Mar Genomics; 2014 Apr; 14():17-22. PubMed ID: 24512973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock.
    Perales M; Más P
    Plant Cell; 2007 Jul; 19(7):2111-23. PubMed ID: 17616736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond Arabidopsis: the circadian clock in non-model plant species.
    McClung CR
    Semin Cell Dev Biol; 2013 May; 24(5):430-6. PubMed ID: 23466287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ELF4 is required for oscillatory properties of the circadian clock.
    McWatters HG; Kolmos E; Hall A; Doyle MR; Amasino RM; Gyula P; Nagy F; Millar AJ; Davis SJ
    Plant Physiol; 2007 May; 144(1):391-401. PubMed ID: 17384164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing entrainment of Ostreococcus tauri circadian clock by green and blue light through a mathematical modeling approach.
    Thommen Q; Pfeuty B; Schatt P; Bijoux A; Bouget FY; Lefranc M
    Front Genet; 2015; 6():65. PubMed ID: 25774167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri.
    Thommen Q; Pfeuty B; Morant PE; Corellou F; Bouget FY; Lefranc M
    PLoS Comput Biol; 2010 Nov; 6(11):e1000990. PubMed ID: 21085637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the photoperiodic entrainment of the plant circadian clock.
    De Caluwé J; de Melo JRF; Tosenberger A; Hermans C; Verbruggen N; Leloup JC; Gonze D
    J Theor Biol; 2017 May; 420():220-231. PubMed ID: 28284990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteasome function is required for biological timing throughout the twenty-four hour cycle.
    van Ooijen G; Dixon LE; Troein C; Millar AJ
    Curr Biol; 2011 May; 21(10):869-75. PubMed ID: 21530263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus.
    Djouani-Tahri el-B; Christie JM; Sanchez-Ferandin S; Sanchez F; Bouget FY; Corellou F
    Plant J; 2011 Feb; 65(4):578-88. PubMed ID: 21235644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of regulatory flexibility under changing environmental conditions.
    Edwards KD; Akman OE; Knox K; Lumsden PJ; Thomson AW; Brown PE; Pokhilko A; Kozma-Bognar L; Nagy F; Rand DA; Millar AJ
    Mol Syst Biol; 2010 Nov; 6():424. PubMed ID: 21045818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light inputs shape the Arabidopsis circadian system.
    Wenden B; Kozma-Bognár L; Edwards KD; Hall AJ; Locke JC; Millar AJ
    Plant J; 2011 May; 66(3):480-91. PubMed ID: 21255161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene.
    Ito S; Kawamura H; Niwa Y; Nakamichi N; Yamashino T; Mizuno T
    Plant Cell Physiol; 2009 Feb; 50(2):290-303. PubMed ID: 19098071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.