BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21219630)

  • 1. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method.
    Mazanetz MP; Ichihara O; Law RJ; Whittaker M
    J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors.
    Yuan Z; Chen X; Fan S; Chang L; Chu L; Zhang Y; Wang J; Li S; Xie J; Hu J; Miao R; Zhu L; Zhao Z; Li H; Li S
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy.
    Takaba K; Watanabe C; Tokuhisa A; Akinaga Y; Ma B; Kanada R; Araki M; Okuno Y; Kawashima Y; Moriwaki H; Kawashita N; Honma T; Fukuzawa K; Tanaka S
    J Comput Chem; 2022 Jul; 43(20):1362-1371. PubMed ID: 35678372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method.
    Takaya D; Niwa H; Mikuni J; Nakamura K; Handa N; Tanaka A; Yokoyama S; Honma T
    J Mol Graph Model; 2020 Sep; 99():107599. PubMed ID: 32348940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D-QSAR Analysis of CDK2 Inhibitors Using FMO Calculations and PLS Regression.
    Yoshida T; Hirono S
    Chem Pharm Bull (Tokyo); 2019; 67(6):546-555. PubMed ID: 31155560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals.
    Paciotti R; Marrone A; Coletti C; Re N
    J Comput Aided Mol Des; 2023 Dec; 37(12):707-719. PubMed ID: 37743428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards good correlation between fragment molecular orbital interaction energies and experimental IC
    Sheng Y; Watanabe H; Maruyama K; Watanabe C; Okiyama Y; Honma T; Fukuzawa K; Tanaka S
    Comput Struct Biotechnol J; 2018; 16():421-434. PubMed ID: 30450166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A
    Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Develop and test a solvent accessible surface area-based model in conformational entropy calculations.
    Wang J; Hou T
    J Chem Inf Model; 2012 May; 52(5):1199-212. PubMed ID: 22497310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity of HIV-1 antibody 2G12 with monosaccharides: a theoretical study based on explicit and implicit water models.
    Koyama Y; Ueno-Noto K; Takano K
    Comput Biol Chem; 2014 Apr; 49():36-44. PubMed ID: 24583603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method.
    Morao I; Fedorov DG; Robinson R; Southey M; Townsend-Nicholson A; Bodkin MJ; Heifetz A
    J Comput Chem; 2017 Sep; 38(23):1987-1990. PubMed ID: 28675443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks.
    Akaki T; Nakamura S; Nishiwaki K; Nakanishi I
    Chem Pharm Bull (Tokyo); 2023 Apr; 71(4):299-306. PubMed ID: 36724968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study.
    Nakanishi I; Fedorov DG; Kitaura K
    Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A
    Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SophosQM: Accurate Binding Affinity Prediction in Compound Optimization.
    Guareschi R; Lukac I; Gilbert IH; Zuccotto F
    ACS Omega; 2023 May; 8(17):15083-15098. PubMed ID: 37151542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.