These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 21219630)
1. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP; Ichihara O; Law RJ; Whittaker M J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630 [TBL] [Abstract][Full Text] [Related]
2. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. Otsuka T; Okimoto N; Taiji M J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829 [TBL] [Abstract][Full Text] [Related]
3. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors. Yuan Z; Chen X; Fan S; Chang L; Chu L; Zhang Y; Wang J; Li S; Xie J; Hu J; Miao R; Zhu L; Zhao Z; Li H; Li S Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203841 [TBL] [Abstract][Full Text] [Related]
4. Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy. Takaba K; Watanabe C; Tokuhisa A; Akinaga Y; Ma B; Kanada R; Araki M; Okuno Y; Kawashima Y; Moriwaki H; Kawashita N; Honma T; Fukuzawa K; Tanaka S J Comput Chem; 2022 Jul; 43(20):1362-1371. PubMed ID: 35678372 [TBL] [Abstract][Full Text] [Related]
5. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. Takaya D; Niwa H; Mikuni J; Nakamura K; Handa N; Tanaka A; Yokoyama S; Honma T J Mol Graph Model; 2020 Sep; 99():107599. PubMed ID: 32348940 [TBL] [Abstract][Full Text] [Related]
6. A 3D-QSAR Analysis of CDK2 Inhibitors Using FMO Calculations and PLS Regression. Yoshida T; Hirono S Chem Pharm Bull (Tokyo); 2019; 67(6):546-555. PubMed ID: 31155560 [TBL] [Abstract][Full Text] [Related]
7. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals. Paciotti R; Marrone A; Coletti C; Re N J Comput Aided Mol Des; 2023 Dec; 37(12):707-719. PubMed ID: 37743428 [TBL] [Abstract][Full Text] [Related]
8. Towards good correlation between fragment molecular orbital interaction energies and experimental IC Sheng Y; Watanabe H; Maruyama K; Watanabe C; Okiyama Y; Honma T; Fukuzawa K; Tanaka S Comput Struct Biotechnol J; 2018; 16():421-434. PubMed ID: 30450166 [TBL] [Abstract][Full Text] [Related]
9. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563 [TBL] [Abstract][Full Text] [Related]
10. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. Wang J; Hou T J Chem Inf Model; 2012 May; 52(5):1199-212. PubMed ID: 22497310 [TBL] [Abstract][Full Text] [Related]
11. Affinity of HIV-1 antibody 2G12 with monosaccharides: a theoretical study based on explicit and implicit water models. Koyama Y; Ueno-Noto K; Takano K Comput Biol Chem; 2014 Apr; 49():36-44. PubMed ID: 24583603 [TBL] [Abstract][Full Text] [Related]
12. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. Tang YT; Marshall GR J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225 [TBL] [Abstract][Full Text] [Related]
13. Estimates of ligand-binding affinities supported by quantum mechanical methods. Söderhjelm P; Kongsted J; Genheden S; Ryde U Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794 [TBL] [Abstract][Full Text] [Related]
14. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
15. Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method. Morao I; Fedorov DG; Robinson R; Southey M; Townsend-Nicholson A; Bodkin MJ; Heifetz A J Comput Chem; 2017 Sep; 38(23):1987-1990. PubMed ID: 28675443 [TBL] [Abstract][Full Text] [Related]
16. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding. Katkova EV; Onufriev AV; Aguilar B; Sulimov VB J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081 [TBL] [Abstract][Full Text] [Related]
17. Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks. Akaki T; Nakamura S; Nishiwaki K; Nakanishi I Chem Pharm Bull (Tokyo); 2023 Apr; 71(4):299-306. PubMed ID: 36724968 [TBL] [Abstract][Full Text] [Related]
18. Combining the Fragment Molecular Orbital and GRID Approaches for the Prediction of Ligand-Metalloenzyme Binding Affinity: The Case Study of hCA II Inhibitors. Paciotti R; Re N; Storchi L Molecules; 2024 Jul; 29(15):. PubMed ID: 39125005 [TBL] [Abstract][Full Text] [Related]
19. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study. Nakanishi I; Fedorov DG; Kitaura K Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719 [TBL] [Abstract][Full Text] [Related]
20. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]