BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21219630)

  • 21. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.
    Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U
    J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach.
    Watanabe C; Watanabe H; Fukuzawa K; Parker LJ; Okiyama Y; Yuki H; Yokoyama S; Nakano H; Tanaka S; Honma T
    J Chem Inf Model; 2017 Dec; 57(12):2996-3010. PubMed ID: 29111719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing Rhodopsin-Arrestin Interactions with the Fragment Molecular Orbital (FMO) Method.
    Heifetz A; Townsend-Nicholson A
    Methods Mol Biol; 2020; 2114():177-186. PubMed ID: 32016894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taking Water into Account with the Fragment Molecular Orbital Method.
    Okiyama Y; Fukuzawa K; Komeiji Y; Tanaka S
    Methods Mol Biol; 2020; 2114():105-122. PubMed ID: 32016889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK.
    Kasper P; Christen P; Gehring H
    Proteins; 2000 Aug; 40(2):185-92. PubMed ID: 10842335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of the Multilayer Fragment Molecular Orbital Method to Predict the Rank Order of Protein-Ligand Binding Affinities: A Case Study Using Tankyrase 2 Inhibitors.
    Okimoto N; Otsuka T; Hirano Y; Taiji M
    ACS Omega; 2018 Apr; 3(4):4475-4485. PubMed ID: 31458673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study.
    Nakamura S; Akaki T; Nishiwaki K; Nakatani M; Kawase Y; Takahashi Y; Nakanishi I
    J Comput Chem; 2023 Mar; 44(7):824-831. PubMed ID: 36444861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain.
    Anisimov VM; Cavasotto CN
    J Comput Chem; 2011 Jul; 32(10):2254-63. PubMed ID: 21484840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain.
    Harada T; Yamagishi K; Nakano T; Kitaura K; Tokiwa H
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jun; 377(4-6):607-15. PubMed ID: 18330543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical Study of Protein-Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Beckett D; Erickson J; Raghavachari K
    J Chem Theory Comput; 2018 Oct; 14(10):5143-5155. PubMed ID: 30265003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf.
    Gohlke H; Case DA
    J Comput Chem; 2004 Jan; 25(2):238-50. PubMed ID: 14648622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fragment-based quantum mechanical calculation of protein-protein binding affinities.
    Wang Y; Liu J; Li J; He X
    J Comput Chem; 2018 Aug; 39(21):1617-1628. PubMed ID: 29707784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand-protein interaction in a pheromone-binding protein.
    Nemoto T; Fedorov DG; Uebayasi M; Kanazawa K; Kitaura K; Komeiji Y
    Comput Biol Chem; 2005 Dec; 29(6):434-9. PubMed ID: 16290169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FMODB: The World's First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method.
    Takaya D; Watanabe C; Nagase S; Kamisaka K; Okiyama Y; Moriwaki H; Yuki H; Sato T; Kurita N; Yagi Y; Takagi T; Kawashita N; Takaba K; Ozawa T; Takimoto-Kamimura M; Tanaka S; Fukuzawa K; Honma T
    J Chem Inf Model; 2021 Feb; 61(2):777-794. PubMed ID: 33511845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches.
    Sun H; Duan L; Chen F; Liu H; Wang Z; Pan P; Zhu F; Zhang JZH; Hou T
    Phys Chem Chem Phys; 2018 May; 20(21):14450-14460. PubMed ID: 29785435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: II. Protein and Its Ligand-Binding System Studies.
    Okiyama Y; Watanabe C; Fukuzawa K; Mochizuki Y; Nakano T; Tanaka S
    J Phys Chem B; 2019 Feb; 123(5):957-973. PubMed ID: 30532968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
    Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computation of host-guest binding free energies with a new quantum mechanics based mining minima algorithm.
    Xu P; Sattasathuchana T; Guidez E; Webb SP; Montgomery K; Yasini H; Pedreira IFM; Gordon MS
    J Chem Phys; 2021 Mar; 154(10):104122. PubMed ID: 33722015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.