These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21219899)

  • 1. Morphological, functional and gene expression analysis of the hyperoxic mouse retina.
    Natoli R; Valter K; Chrysostomou V; Stone J; Provis J
    Exp Eye Res; 2011 Apr; 92(4):306-14. PubMed ID: 21219899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and role of the early-response gene Oxr1 in the hyperoxia-challenged mouse retina.
    Natoli R; Provis J; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4561-7. PubMed ID: 18539939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor degeneration and loss of retinal function in the C57BL/6-C2J mouse.
    Bravo-Nuevo A; Walsh N; Stone J
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):2005-12. PubMed ID: 15161869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental damage to the retina and preconditioning: contrasting effects of light and hyperoxic stress.
    Zhu Y; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4821-30. PubMed ID: 20393118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in photoreceptor sensitivity to oxygen stress between Long Evans and Sprague-Dawley rats.
    Chrysostomou V; Stone J; Valter K
    Adv Exp Med Biol; 2010; 664():473-9. PubMed ID: 20238049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat.
    Yu DY; Cringle S; Valter K; Walsh N; Lee D; Stone J
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):2013-9. PubMed ID: 15161870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study.
    Natoli R; Provis J; Valter K; Stone J
    Mol Vis; 2008; 14():1983-94. PubMed ID: 18989387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential gene expression in mouse retina related to regional differences in vulnerability to hyperoxia.
    Zhu Y; Natoli R; Valter K; Stone J
    Mol Vis; 2010 Apr; 16():740-55. PubMed ID: 20454693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The retinal phenotype of Grk1-/- is compromised by a Crb1 rd8 mutation.
    Pak JS; Lee EJ; Craft CM
    Mol Vis; 2015; 21():1281-94. PubMed ID: 26664249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oxygen and bFGF on the vulnerability of photoreceptors to light damage.
    Bowers F; Valter K; Chan S; Walsh N; Maslim J; Stone J
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):804-15. PubMed ID: 11222544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficacy of delayed oxygen therapy in the treatment of experimental retinal detachment.
    Lewis GP; Talaga KC; Linberg KA; Avery RL; Fisher SK
    Am J Ophthalmol; 2004 Jun; 137(6):1085-95. PubMed ID: 15183794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina.
    Rutar M; Provis JM; Valter K
    Curr Eye Res; 2010 Jul; 35(7):631-43. PubMed ID: 20597649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a brief period of enhanced oxygen susceptibility in the rat model of oxygen-induced retinopathy.
    Dembinska O; Rojas LM; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2481-90. PubMed ID: 12091454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina.
    Albarracin R; Natoli R; Rutar M; Valter K; Provis J
    BMC Neurosci; 2013 Oct; 14():125. PubMed ID: 24134095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote Ischemic Preconditioning Protects Retinal Photoreceptors: Evidence From a Rat Model of Light-Induced Photoreceptor Degeneration.
    Brandli A; Johnstone DM; Stone J
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5302-5313. PubMed ID: 27727393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of photoreceptors in the C57BL/6-c2J, C57BL/6J, and BALB/cJ mouse strains to oxygen stress: evidence of an oxygen phenotype.
    Walsh N; Bravo-Nuevo A; Geller S; Stone J
    Curr Eye Res; 2004 Dec; 29(6):441-7. PubMed ID: 15764088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ability of hyperoxia to limit the effects of experimental detachment in cone-dominated retina.
    Sakai T; Lewis GP; Linberg KA; Fisher SK
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3264-73. PubMed ID: 11726632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin.
    Nakazawa T; Takeda M; Lewis GP; Cho KS; Jiao J; Wilhelmsson U; Fisher SK; Pekny M; Chen DF; Miller JW
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2760-8. PubMed ID: 17525210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental death of photoreceptors in the C57BL/6J mouse: association with retinal function and self-protection.
    Mervin K; Stone J
    Exp Eye Res; 2002 Dec; 75(6):703-13. PubMed ID: 12470972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.