These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
764 related articles for article (PubMed ID: 21220029)
1. Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda infection on gene expression in turbot (Scophthalmus maximus). Dang W; Sun L Fish Shellfish Immunol; 2011 Feb; 30(2):720-8. PubMed ID: 21220029 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus). Yang CG; Wang XL; Tian J; Liu W; Wu F; Jiang M; Wen H Gene; 2013 Sep; 527(1):183-92. PubMed ID: 23792389 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of internal control genes for qRT-PCR normalization in tissues and cell culture for antiviral studies of grass carp (Ctenopharyngodon idella). Su J; Zhang R; Dong J; Yang C Fish Shellfish Immunol; 2011 Mar; 30(3):830-5. PubMed ID: 21255653 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Zheng WJ; Sun L Fish Shellfish Immunol; 2011 Feb; 30(2):638-45. PubMed ID: 21185941 [TBL] [Abstract][Full Text] [Related]
5. Selection of normalization factors for quantitative real time RT-PCR studies in Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus) under conditions of viral infection. Zhang J; Hu YH; Sun BG; Xiao ZZ; Sun L Vet Immunol Immunopathol; 2013 Apr; 152(3-4):303-16. PubMed ID: 23332581 [TBL] [Abstract][Full Text] [Related]
6. Validation of reference genes of grass carp Ctenopharyngodon idellus for the normalization of quantitative real-time PCR. Ye X; Zhang L; Dong H; Tian Y; Lao H; Bai J; Yu L Biotechnol Lett; 2010 Aug; 32(8):1031-8. PubMed ID: 20361234 [TBL] [Abstract][Full Text] [Related]
7. Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Small BC; Murdock CA; Bilodeau-Bourgeois AL; Peterson BC; Waldbieser GC Comp Biochem Physiol B Biochem Mol Biol; 2008 Nov; 151(3):296-304. PubMed ID: 18692590 [TBL] [Abstract][Full Text] [Related]
8. Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Dhar AK; Bowers RM; Licon KS; Veazey G; Read B Mol Immunol; 2009 May; 46(8-9):1688-95. PubMed ID: 19297025 [TBL] [Abstract][Full Text] [Related]
9. Reference gene validation for quantification of gene expression during ovarian development of turbot (Scophthalmus maximus). Gao Y; Gao Y; Huang B; Meng Z; Jia Y Sci Rep; 2020 Jan; 10(1):823. PubMed ID: 31964949 [TBL] [Abstract][Full Text] [Related]
10. Reference gene selection for quantitative real-time RT-PCR normalization in the half-smooth tongue sole (Cynoglossus semilaevis) at different developmental stages, in various tissue types and on exposure to chemicals. Liu C; Xin N; Zhai Y; Jiang L; Zhai J; Zhang Q; Qi J PLoS One; 2014; 9(3):e91715. PubMed ID: 24667563 [TBL] [Abstract][Full Text] [Related]
11. Normalization strategies for gene expression studies by real-time PCR in a marine fish species, Scophthalmus maximus. Urbatzka R; Galante-Oliveira S; Rocha E; Castro LF; Cunha I Mar Genomics; 2013 Jun; 10():17-25. PubMed ID: 23517768 [TBL] [Abstract][Full Text] [Related]
12. Selection of reference genes for reverse transcription quantitative real-time PCR normalization in black rockfish (Sebastes schlegeli). Liman M; Wenji W; Conghui L; Haiyang Y; Zhigang W; Xubo W; Jie Q; Quanqi Z Mar Genomics; 2013 Sep; 11():67-73. PubMed ID: 24007945 [TBL] [Abstract][Full Text] [Related]
13. Selection of reference genes for quantitative real-time RT-PCR on gene expression in Golden Pompano (Trachinotus ovatus). Chen XJ; Zhang XQ; Huang S; Cao ZJ; Qin QW; Hu WT; Sun Y; Zhou YC Pol J Vet Sci; 2017 Sep; 20(3):583-594. PubMed ID: 29166265 [TBL] [Abstract][Full Text] [Related]
14. SmC2P1, a C2 domain protein from Scophthalmus maximus that binds bacterial pathogen-infected lymphocytes and reduces bacterial survival. Zhao L; Hu YH; Sun L; Sun JS Fish Shellfish Immunol; 2010 Nov; 29(5):786-92. PubMed ID: 20633652 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Toll-like receptor 22 in turbot (Scophthalmus maximus). Xing J; Zhou X; Tang X; Sheng X; Zhan W Fish Shellfish Immunol; 2017 Jul; 66():156-162. PubMed ID: 28495564 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the suitability of six host genes as internal control in real-time RT-PCR assays in chicken embryo cell cultures infected with infectious bursal disease virus. Li YP; Bang DD; Handberg KJ; Jorgensen PH; Zhang MF Vet Microbiol; 2005 Oct; 110(3-4):155-65. PubMed ID: 16159698 [TBL] [Abstract][Full Text] [Related]
17. Identification and analysis of a Scophthalmus maximus ferritin that is regulated at transcription level by oxidative stress and bacterial infection. Zheng WJ; Hu YH; Sun L Comp Biochem Physiol B Biochem Mol Biol; 2010 Jul; 156(3):222-8. PubMed ID: 20382253 [TBL] [Abstract][Full Text] [Related]
18. Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Fernandes JM; Mommens M; Hagen O; Babiak I; Solberg C Comp Biochem Physiol B Biochem Mol Biol; 2008 May; 150(1):23-32. PubMed ID: 18302990 [TBL] [Abstract][Full Text] [Related]
19. Housekeeping gene expression in bovine liver is affected by physiological state, feed intake, and dietary treatment. Janovick-Guretzky NA; Dann HM; Carlson DB; Murphy MR; Loor JJ; Drackley JK J Dairy Sci; 2007 May; 90(5):2246-52. PubMed ID: 17430924 [TBL] [Abstract][Full Text] [Related]
20. Identification of housekeeping genes suitable for gene expression analysis in Jian carp (Cyprinus carpio var. jian). Tang YK; Yu JH; Xu P; Li JL; Li HX; Ren HT Fish Shellfish Immunol; 2012 Oct; 33(4):775-9. PubMed ID: 22789712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]