These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 21220111)

  • 1. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification.
    Stoddard BL
    Structure; 2011 Jan; 19(1):7-15. PubMed ID: 21220111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homing endonuclease structure and function.
    Stoddard BL
    Q Rev Biophys; 2005 Feb; 38(1):49-95. PubMed ID: 16336743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-plasmid bacterial selection system for characterization and engineering of homing endonucleases.
    Sun N; Zhao H
    Methods Mol Biol; 2014; 1123():87-96. PubMed ID: 24510262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tapping natural reservoirs of homing endonucleases for targeted gene modification.
    Takeuchi R; Lambert AR; Mak AN; Jacoby K; Dickson RJ; Gloor GB; Scharenberg AM; Edgell DR; Stoddard BL
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13077-82. PubMed ID: 21784983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of customized meganucleases via in vitro compartmentalization and in cellulo optimization.
    Takeuchi R; Choi M; Stoddard BL
    Methods Mol Biol; 2015; 1239():105-32. PubMed ID: 25408403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional characteristics of homing endonucleases.
    Guhan N; Muniyappa K
    Crit Rev Biochem Mol Biol; 2003; 38(3):199-248. PubMed ID: 12870715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of new homing endonuclease specificities at individual target site positions.
    Sussman D; Chadsey M; Fauce S; Engel A; Bruett A; Monnat R; Stoddard BL; Seligman LM
    J Mol Biol; 2004 Sep; 342(1):31-41. PubMed ID: 15313605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease.
    Antunes MS; Smith JJ; Jantz D; Medford JI
    BMC Biotechnol; 2012 Nov; 12():86. PubMed ID: 23148662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases.
    Redondo P; Prieto J; Muñoz IG; Alibés A; Stricher F; Serrano L; Cabaniols JP; Daboussi F; Arnould S; Perez C; Duchateau P; Pâques F; Blanco FJ; Montoya G
    Nature; 2008 Nov; 456(7218):107-11. PubMed ID: 18987743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease.
    McConnell Smith A; Takeuchi R; Pellenz S; Davis L; Maizels N; Monnat RJ; Stoddard BL
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5099-104. PubMed ID: 19276110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant genome engineering with sequence-specific nucleases.
    Voytas DF
    Annu Rev Plant Biol; 2013; 64():327-50. PubMed ID: 23451779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homing endonucleases: structure, function and evolution.
    Jurica MS; Stoddard BL
    Cell Mol Life Sci; 1999 Aug; 55(10):1304-26. PubMed ID: 10487208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress in zinc finger nuclease engineering for targeted genome modification].
    Xiao A; Hu YY; Wang WY; Yang ZP; Wang ZX; Huang P; Tong XJ; Zhang B; Lin S
    Yi Chuan; 2011 Jul; 33(7):665-83. PubMed ID: 22049679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold.
    Molina R; Marcaida MJ; Redondo P; Marenchino M; Duchateau P; D'Abramo M; Montoya G; Prieto J
    J Biol Chem; 2015 Jul; 290(30):18534-44. PubMed ID: 26045557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homing endonucleases from mobile group I introns: discovery to genome engineering.
    Stoddard BL
    Mob DNA; 2014 Mar; 5(1):7. PubMed ID: 24589358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy.
    Pâques F; Duchateau P
    Curr Gene Ther; 2007 Feb; 7(1):49-66. PubMed ID: 17305528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of varying gene targeting parameters on processing of recombination intermediates by ERCC1-XPF.
    Rahn JJ; Rowley B; Lowery MP; Coletta LD; Limanni T; Nairn RS; Adair GM
    DNA Repair (Amst); 2011 Feb; 10(2):188-98. PubMed ID: 21123118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells.
    Arnould S; Perez C; Cabaniols JP; Smith J; Gouble A; Grizot S; Epinat JC; Duclert A; Duchateau P; Pâques F
    J Mol Biol; 2007 Aug; 371(1):49-65. PubMed ID: 17561112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification.
    Molina R; Redondo P; López-Méndez B; Villate M; Merino N; Blanco FJ; Valton J; Grizot S; Duchateau P; Prieto J; Montoya G
    J Biol Chem; 2015 Nov; 290(48):28727-36. PubMed ID: 26363068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile DNA elements in T4 and related phages.
    Edgell DR; Gibb EA; Belfort M
    Virol J; 2010 Oct; 7():290. PubMed ID: 21029434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.