These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21220304)

  • 21. Evolving spike-timing-dependent plasticity for single-trial learning in robots.
    Di Paolo EA
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2299-319. PubMed ID: 14599321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors.
    Quinn M; Smith L; Mayley G; Husbands P
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2321-43. PubMed ID: 14599322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic redundancy in evolving populations of simulated robots.
    Miglino O; Walker R
    Artif Life; 2002; 8(3):265-77. PubMed ID: 12537686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive and Resilient Soft Tensegrity Robots.
    Rieffel J; Mouret JB
    Soft Robot; 2018 Jun; 5(3):318-329. PubMed ID: 29664708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creating high-level components with a generative representation for body-brain evolution.
    Hornby GS; Pollack JB
    Artif Life; 2002; 8(3):223-46. PubMed ID: 12537684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots.
    Wischmann S; Floreano D; Keller L
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):864-8. PubMed ID: 22215591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering the evolution of self-organizing behaviors in swarm robotics: a case study.
    Trianni V; Nolfi S
    Artif Life; 2011; 17(3):183-202. PubMed ID: 21554112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. View from the boundary.
    Webb B
    Biol Bull; 2001 Apr; 200(2):184-9. PubMed ID: 11341581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human interaction behavior modeling using Generative Adversarial Networks.
    Nishimura Y; Nakamura Y; Ishiguro H
    Neural Netw; 2020 Dec; 132():521-531. PubMed ID: 33039789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental influence on the evolution of morphological complexity in machines.
    Auerbach JE; Bongard JC
    PLoS Comput Biol; 2014 Jan; 10(1):e1003399. PubMed ID: 24391483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Morphological Variation in Evolutionary Robotics: Maximizing Performance and Robustness.
    Carvalho JT; Nolfi S
    Evol Comput; 2024 Jun; 32(2):125-142. PubMed ID: 37390220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
    Ritzmann RE; Quinn RD; Fischer MS
    Arthropod Struct Dev; 2004 Jul; 33(3):361-79. PubMed ID: 18089044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards highly-tuned mobility in multiple domains with a dynamical legged platform.
    Miller BD; Clark JE
    Bioinspir Biomim; 2015 Jun; 10(4):046001. PubMed ID: 26080033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Organizing Map With Time-Varying Structure to Plan and Control Artificial Locomotion.
    Araujo AF; Santana OV
    IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1594-607. PubMed ID: 25203996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ant-like task allocation and recruitment in cooperative robots.
    Krieger MJ; Billeter JB; Keller L
    Nature; 2000 Aug; 406(6799):992-5. PubMed ID: 10984052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The balance between initial training and lifelong adaptation in evolving robot controllers.
    Walker JH; Garrett SM; Wilson MS
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):423-32. PubMed ID: 16602601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.
    Rodríguez-Lera FJ; Matellán-Olivera V; Conde-González MÁ; Martín-Rico F
    Cogn Process; 2018 May; 19(2):233-244. PubMed ID: 29305760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distributed coordination of simulated robots based on self-organization.
    Baldassarre G; Parisi D; Nolfi S
    Artif Life; 2006; 12(3):289-311. PubMed ID: 16859442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.