These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21220359)

  • 1. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase.
    Hall AR; Iles JC; MacLean RC
    Genetics; 2011 Mar; 187(3):817-22. PubMed ID: 21220359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa.
    Qi Q; Preston GM; MacLean RC
    mBio; 2014 Dec; 5(6):e01562. PubMed ID: 25491352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa.
    Hall AR; MacLean RC
    Evolution; 2011 Aug; 65(8):2370-9. PubMed ID: 21790582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa.
    Gifford DR; Moss E; MacLean RC
    Evolution; 2016 Mar; 70(3):725-30. PubMed ID: 26880677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa.
    Qi Q; Toll-Riera M; Heilbron K; Preston GM; MacLean RC
    Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates.
    Cabot G; Zamorano L; Moyà B; Juan C; Navas A; Blázquez J; Oliver A
    Antimicrob Agents Chemother; 2016 Jan; 60(3):1767-78. PubMed ID: 26729493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant
    Olivares Pacheco J; Alvarez-Ortega C; Alcalde Rico M; Martínez JL
    mBio; 2017 Jul; 8(4):. PubMed ID: 28743808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental mutagens may be implicated in the emergence of drug-resistant microorganisms.
    Miyahara E; Nishie M; Takumi S; Miyanohara H; Nishi J; Yoshiie K; Oda H; Takeuchi M; Komatsu M; Aoyama K; Horiuchi M; Takeuchi T
    FEMS Microbiol Lett; 2011 Apr; 317(2):109-16. PubMed ID: 21241358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa.
    MacLean RC; Buckling A
    PLoS Genet; 2009 Mar; 5(3):e1000406. PubMed ID: 19266075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased survival of antibiotic-resistant Escherichia coli inside macrophages.
    Miskinyte M; Gordo I
    Antimicrob Agents Chemother; 2013 Jan; 57(1):189-95. PubMed ID: 23089747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro.
    Wang C; Fang R; Zhou B; Tian X; Zhang X; Zheng X; Zhang S; Dong G; Cao J; Zhou T
    BMC Microbiol; 2019 Sep; 19(1):220. PubMed ID: 31533633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cost of multiple drug resistance in Pseudomonas aeruginosa.
    Ward H; Perron GG; Maclean RC
    J Evol Biol; 2009 May; 22(5):997-1003. PubMed ID: 19298493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria.
    Perron GG; Hall AR; Buckling A
    Am Nat; 2010 Sep; 176(3):303-11. PubMed ID: 20624092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas.
    Vogwill T; Kojadinovic M; MacLean RC
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa.
    Kugelberg E; Löfmark S; Wretlind B; Andersson DI
    J Antimicrob Chemother; 2005 Jan; 55(1):22-30. PubMed ID: 15574475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance.
    Nicholson WL; Park R
    FEMS Microbiol Lett; 2015 Dec; 362(24):fnv213. PubMed ID: 26538577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis.
    Brandis G; Pietsch F; Alemayehu R; Hughes D
    J Antimicrob Chemother; 2015 Mar; 70(3):680-5. PubMed ID: 25362573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa.
    Rundell EA; Commodore N; Goodman AL; Kazmierczak BI
    J Bacteriol; 2020 Feb; 202(6):. PubMed ID: 31871033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa.
    Blázquez J; Gómez-Gómez JM; Oliver A; Juan C; Kapur V; Martín S
    Mol Microbiol; 2006 Oct; 62(1):84-99. PubMed ID: 16956383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.