These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Eicosapentaenoic acid suppresses adverse effects of C-reactive protein overexpression on pressure overload-induced cardiac remodeling. Nagai T; Anzai T; Mano Y; Kaneko H; Anzai A; Sugano Y; Maekawa Y; Takahashi T; Yoshikawa T; Fukuda K Heart Vessels; 2013 May; 28(3):404-11. PubMed ID: 22875408 [TBL] [Abstract][Full Text] [Related]
3. C-reactive protein: just a biomarker of inflammation or a pathophysiological player in myocardial function and morphology? Schulz R; Heusch G Hypertension; 2011 Feb; 57(2):151-3. PubMed ID: 21220709 [No Abstract] [Full Text] [Related]
4. C-reactive protein promotes cardiac fibrosis and inflammation in angiotensin II-induced hypertensive cardiac disease. Zhang R; Zhang YY; Huang XR; Wu Y; Chung AC; Wu EX; Szalai AJ; Wong BC; Lau CP; Lan HY Hypertension; 2010 Apr; 55(4):953-60. PubMed ID: 20157054 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of human C-reactive protein exacerbates left ventricular remodeling in diabetic cardiomyopathy. Mano Y; Anzai T; Kaneko H; Nagatomo Y; Nagai T; Anzai A; Maekawa Y; Takahashi T; Meguro T; Yoshikawa T; Fukuda K Circ J; 2011; 75(7):1717-27. PubMed ID: 21519150 [TBL] [Abstract][Full Text] [Related]
6. Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure. Szabó Z; Magga J; Alakoski T; Ulvila J; Piuhola J; Vainio L; Kivirikko KI; Vuolteenaho O; Ruskoaho H; Lipson KE; Signore P; Kerkelä R Hypertension; 2014 Jun; 63(6):1235-40. PubMed ID: 24688123 [TBL] [Abstract][Full Text] [Related]
7. Human C-reactive protein exacerbates metabolic disorders in association with adipose tissue remodelling. Kaneko H; Anzai T; Nagai T; Anzai A; Takahashi T; Mano Y; Morimoto K; Maekawa Y; Itoh H; Yoshikawa T; Ogawa S; Fukuda K Cardiovasc Res; 2011 Aug; 91(3):546-55. PubMed ID: 21447704 [TBL] [Abstract][Full Text] [Related]
8. Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments. Patel VB; Wang Z; Fan D; Zhabyeyev P; Basu R; Das SK; Wang W; Desaulniers J; Holland SM; Kassiri Z; Oudit GY Circ Res; 2013 Jun; 112(12):1542-56. PubMed ID: 23553616 [TBL] [Abstract][Full Text] [Related]
9. Genetic ablation of TRPV1 exacerbates pressure overload-induced cardiac hypertrophy. Zhong B; Rubinstein J; Ma S; Wang DH Biomed Pharmacother; 2018 Mar; 99():261-270. PubMed ID: 29334670 [TBL] [Abstract][Full Text] [Related]
10. Cardiac hypertrophy is enhanced in PPAR alpha-/- mice in response to chronic pressure overload. Smeets PJ; Teunissen BE; Willemsen PH; van Nieuwenhoven FA; Brouns AE; Janssen BJ; Cleutjens JP; Staels B; van der Vusse GJ; van Bilsen M Cardiovasc Res; 2008 Apr; 78(1):79-89. PubMed ID: 18187461 [TBL] [Abstract][Full Text] [Related]
12. CXCR6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregulating TNF-α-dependent MMP9 pathway. Wang JH; Su F; Wang S; Lu XC; Zhang SH; Chen D; Chen NN; Zhong JQ Int J Clin Exp Pathol; 2014; 7(10):6514-23. PubMed ID: 25400729 [TBL] [Abstract][Full Text] [Related]
13. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Matsusaka H; Ide T; Matsushima S; Ikeuchi M; Kubota T; Sunagawa K; Kinugawa S; Tsutsui H Hypertension; 2006 Apr; 47(4):711-7. PubMed ID: 16505197 [TBL] [Abstract][Full Text] [Related]
14. ANO1 relieves pressure overload-induced myocardial fibrosis in mice by inhibiting TGF-β/Smad3 signaling pathway. Kong JC; Miao WQ; Wang Y; Zhou SF Eur Rev Med Pharmacol Sci; 2020 Aug; 24(16):8493-8501. PubMed ID: 32894555 [TBL] [Abstract][Full Text] [Related]
15. Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Li XM; Ma YT; Yang YN; Liu F; Chen BD; Han W; Zhang JF; Gao XM Clin Exp Pharmacol Physiol; 2009 Nov; 36(11):1054-61. PubMed ID: 19566828 [TBL] [Abstract][Full Text] [Related]
17. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431 [TBL] [Abstract][Full Text] [Related]
18. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits. Li B; Tian J; Sun Y; Xu TR; Chi RF; Zhang XL; Hu XL; Zhang YA; Qin FZ; Zhang WF Biochim Biophys Acta; 2015 May; 1852(5):805-15. PubMed ID: 25615792 [TBL] [Abstract][Full Text] [Related]
19. Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca Suetomi T; Willeford A; Brand CS; Cho Y; Ross RS; Miyamoto S; Brown JH Circulation; 2018 Nov; 138(22):2530-2544. PubMed ID: 30571348 [TBL] [Abstract][Full Text] [Related]
20. The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload. Meems LM; Cannon MV; Mahmud H; Voors AA; van Gilst WH; Silljé HH; Ruifrok WP; de Boer RA J Steroid Biochem Mol Biol; 2012 Nov; 132(3-5):282-9. PubMed ID: 22800987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]