BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21220762)

  • 1. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.
    Dionisio G; Madsen CK; Holm PB; Welinder KG; Jørgensen M; Stoger E; Arcalis E; Brinch-Pedersen H
    Plant Physiol; 2011 Jul; 156(3):1087-100. PubMed ID: 21220762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene.
    Madsen CK; Dionisio G; Holme IB; Holm PB; Brinch-Pedersen H
    J Exp Bot; 2013 Aug; 64(11):3111-23. PubMed ID: 23918958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs.
    Holme IB; Wendt T; Gil-Humanes J; Deleuran LC; Starker CG; Voytas DF; Brinch-Pedersen H
    Plant Mol Biol; 2017 Sep; 95(1-2):111-121. PubMed ID: 28755320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Advances on Phytases in Barley and Wheat.
    Madsen CK; Brinch-Pedersen H
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination.
    Dionisio G; Holm PB; Brinch-Pedersen H
    Plant Biotechnol J; 2007 Mar; 5(2):325-38. PubMed ID: 17309687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylations and truncations of functional cereal phytases expressed and secreted by Pichia pastoris documented by mass spectrometry.
    Dionisio G; Jørgensen M; Welinder KG; Brinch-Pedersen H
    Protein Expr Purif; 2012 Mar; 82(1):179-85. PubMed ID: 22240269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants.
    Faba-Rodriguez R; Gu Y; Salmon M; Dionisio G; Brinch-Pedersen H; Brearley CA; Hemmings AM
    Plant Commun; 2022 Mar; 3(2):100305. PubMed ID: 35529950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.
    Holme IB; Dionisio G; Madsen CK; Brinch-Pedersen H
    Plant Biotechnol J; 2017 Apr; 15(4):415-422. PubMed ID: 27633382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different site-specific N-glycan types in wheat (Triticum aestivum L.) PAP phytase.
    Dionisio G; Brinch-Pedersen H; Welinder KG; Jørgensen M
    Phytochemistry; 2011 Jul; 72(10):1173-9. PubMed ID: 21329951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings.
    Hegeman CE; Grabau EA
    Plant Physiol; 2001 Aug; 126(4):1598-608. PubMed ID: 11500558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal Stacking of
    Holme IB; Madsen CK; Wendt T; Brinch-Pedersen H
    Front Plant Sci; 2020; 11():592139. PubMed ID: 33193549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of a cDNA encoding a maize seedling phytase.
    Maugenest S; Martinez I; Lescure AM
    Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):511-7. PubMed ID: 9065771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds.
    Hong CY; Cheng KJ; Tseng TH; Wang CS; Liu LF; Yu SM
    Transgenic Res; 2004 Feb; 13(1):29-39. PubMed ID: 15070073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants.
    Bashir K; Nagasaka S; Itai RN; Kobayashi T; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2007 Oct; 65(3):277-84. PubMed ID: 17710555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of two maize phytase genes and their spatio-temporal expression during seedling development.
    Maugenest S; Martinez I; Godin B; Perez P; Lescure AM
    Plant Mol Biol; 1999 Feb; 39(3):503-14. PubMed ID: 10092178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P and Ca digestibility is increased in broiler diets supplemented with the high-phytase HIGHPHY wheat.
    Scholey D; Burton E; Morgan N; Sanni C; Madsen CK; Dionisio G; Brinch-Pedersen H
    Animal; 2017 Sep; 11(9):1457-1463. PubMed ID: 28318476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm.
    Burton RA; Johnson PE; Beckles DM; Fincher GB; Jenner HL; Naldrett MJ; Denyer K
    Plant Physiol; 2002 Nov; 130(3):1464-75. PubMed ID: 12428011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize.
    Bélanger S; Pokhrel S; Czymmek K; Meyers BC
    Plant Physiol; 2020 Nov; 184(3):1407-1423. PubMed ID: 32917771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The scutellar vascular bundle-specific promoter of the wheat HD-Zip IV transcription factor shows similar spatial and temporal activity in transgenic wheat, barley and rice.
    Kovalchuk N; Wu W; Eini O; Bazanova N; Pallotta M; Shirley N; Singh R; Ismagul A; Eliby S; Johnson A; Langridge P; Lopato S
    Plant Biotechnol J; 2012 Jan; 10(1):43-53. PubMed ID: 21689369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase.
    Lung SC; Leung A; Kuang R; Wang Y; Leung P; Lim BL
    Phytochemistry; 2008 Jan; 69(2):365-73. PubMed ID: 17897689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.