BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 21220783)

  • 1. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis.
    Ball S; Colleoni C; Cenci U; Raj JN; Tirtiaux C
    J Exp Bot; 2011 Mar; 62(6):1775-801. PubMed ID: 21220783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relocation of starch metabolism to chloroplasts: when, why and how.
    Deschamps P; Haferkamp I; d'Hulst C; Neuhaus HE; Ball SG
    Trends Plant Sci; 2008 Nov; 13(11):574-82. PubMed ID: 18824400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic symbiosis and the birth of the plant kingdom.
    Deschamps P; Colleoni C; Nakamura Y; Suzuki E; Putaux JL; Buléon A; Haebel S; Ritte G; Steup M; Falcón LI; Moreira D; Löffelhardt W; Raj JN; Plancke C; d'Hulst C; Dauvillée D; Ball S
    Mol Biol Evol; 2008 Mar; 25(3):536-48. PubMed ID: 18093994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois?
    Facchinelli F; Colleoni C; Ball SG; Weber AP
    Trends Plant Sci; 2013 Dec; 18(12):673-9. PubMed ID: 24126104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition from glycogen to starch metabolism in Archaeplastida.
    Cenci U; Nitschke F; Steup M; Minassian BA; Colleoni C; Ball SG
    Trends Plant Sci; 2014 Jan; 19(1):18-28. PubMed ID: 24035236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts.
    Deschamps P; Moreau H; Worden AZ; Dauvillée D; Ball SG
    Genetics; 2008 Apr; 178(4):2373-87. PubMed ID: 18245855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis.
    Colleoni C; Linka M; Deschamps P; Handford MG; Dupree P; Weber AP; Ball SG
    Mol Biol Evol; 2010 Dec; 27(12):2691-701. PubMed ID: 20576760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unique features of starch metabolism in red algae.
    Viola R; Nyvall P; Pedersén M
    Proc Biol Sci; 2001 Jul; 268(1474):1417-22. PubMed ID: 11429143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic starch degradation: integration of plastidial and cytosolic pathways.
    Fettke J; Hejazi M; Smirnova J; Höchel E; Stage M; Steup M
    J Exp Bot; 2009; 60(10):2907-22. PubMed ID: 19325165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of carbon storage and partitioning in response to light and sugars.
    Geigenberger P; Kolbe A; Tiessen A
    J Exp Bot; 2005 Jun; 56(416):1469-79. PubMed ID: 15863446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D
    Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule.
    Ball SG; Morell MK
    Annu Rev Plant Biol; 2003; 54():207-33. PubMed ID: 14502990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complexity and evolution of the plastid-division machinery.
    Maple J; Møller SG
    Biochem Soc Trans; 2010 Jun; 38(3):783-8. PubMed ID: 20491665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastid biogenesis, between light and shadows.
    López-Juez E
    J Exp Bot; 2007; 58(1):11-26. PubMed ID: 17108152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.