These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2122079)

  • 1. Uptake and transport of hexoses into polymorphonuclear leukocytes of patients with glycogen storage disease type 1b.
    Bashan N; Potashnik R; Peleg N; Moran A; Moses SW
    J Inherit Metab Dis; 1990; 13(3):252-4. PubMed ID: 2122079
    [No Abstract]   [Full Text] [Related]  

  • 2. Hexose uptake and transport in polymorphonuclear leukocytes from patients with glycogen storage disease Ib.
    Potashnik R; Moran A; Moses SW; Peleg N; Bashan N
    Pediatr Res; 1990 Jul; 28(1):19-23. PubMed ID: 2377393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficient glucose phosphorylation as a possible common denominator and its relation to abnormal leucocyte function, in glycogen storage disease 1b patients.
    Bashan N; Potashnik R; Peist A; Peleg N; Moran A; Moses SW
    Eur J Pediatr; 1993; 152 Suppl 1():S44-8. PubMed ID: 8391446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chemotactic factors on hexose transport in polymorphonuclear leucocytes.
    Okuno Y; Gliemann J
    Biochim Biophys Acta; 1988 Jun; 941(2):157-64. PubMed ID: 3132973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal regression of glucose transport in a patient with glycogen storage disease type 1b.
    Levy J; Abu-Ras MT; Berenstein T; Potashnik R; Meisner I; Moses SW; Bashan N
    J Inherit Metab Dis; 1994; 17(1):16-22. PubMed ID: 8051933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired carbohydrate metabolism of polymorphonuclear leukocytes in glycogen storage disease Ib.
    Bashan N; Hagai Y; Potashnik R; Moses SW
    J Clin Invest; 1988 May; 81(5):1317-22. PubMed ID: 3163346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate metabolism in cultured animal cells.
    Morgan MJ; Faik P
    Biosci Rep; 1981 Sep; 1(9):669-86. PubMed ID: 6213274
    [No Abstract]   [Full Text] [Related]  

  • 8. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential control of the functional cell surface expression and content of hexose transporter GLUT-1 by glucose and glucose metabolism in murine fibroblasts.
    Ortiz PA; Haspel HC
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):67-72. PubMed ID: 8216241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo location of the rate-limiting step of hexose uptake in muscle and brain tissue of rats.
    Furler SM; Jenkins AB; Storlien LH; Kraegen EW
    Am J Physiol; 1991 Sep; 261(3 Pt 1):E337-47. PubMed ID: 1887881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts.
    Bigley R; Wirth M; Layman D; Riddle M; Stankova L
    Diabetes; 1983 Jun; 32(6):545-8. PubMed ID: 6354783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant.
    Holden JE; Mori K; Dienel GA; Cruz NF; Nelson T; Sokoloff L
    J Cereb Blood Flow Metab; 1991 Mar; 11(2):171-82. PubMed ID: 1997495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of arachidonic acid in stimulation of hexose transport by human polymorphonuclear leukocytes.
    Bass DA; O'Flaherty JT; Szejda P; DeChatelet LR; McCall CE
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5125-9. PubMed ID: 6776534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Deoxy-D-glucose accumulation in adipocytes: apparent transport discrimination between 2-deoxy-D-glucose and 3-O-methyl-D-glucose.
    Thompson KA; Kleinzeller A
    Biochim Biophys Acta; 1989 Mar; 1011(1):58-60. PubMed ID: 2923870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of glucose analogues into cultured cerebral microvessel endothelium.
    Vinters HV; Beck DW; Bready JV; Maxwell K; Berliner JA; Hart MN; Cancilla PA
    J Neuropathol Exp Neurol; 1985 Sep; 44(5):445-58. PubMed ID: 3897465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of hexose transport by human polymorphonuclear leukocytes: a possible role for protein kinase C.
    McCall C; Schmitt J; Cousart S; O'Flaherty J; Bass D; Wykle R
    Biochem Biophys Res Commun; 1985 Jan; 126(1):450-6. PubMed ID: 3155945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring hexose transport in suspended cells.
    Gliemann J
    Methods Enzymol; 1989; 173():616-34. PubMed ID: 2674621
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of the anticancer agent VM-26 on hexose uptake in Ehrlich cells.
    Wright SE; White JC
    Cancer Biochem Biophys; 1989 May; 10(3):185-96. PubMed ID: 2776116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Deoxy-D-glucose uptake in cultured human muscle cells.
    Jacobs AE; Oosterhof A; Veerkamp JH
    Biochim Biophys Acta; 1990 Mar; 1051(3):230-6. PubMed ID: 2310773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quercetin inhibits hexose transport in a human diploid fibroblast.
    Salter DW; Custead-Jones S; Cook JS
    J Membr Biol; 1978 Apr; 40(1):67-76. PubMed ID: 650675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.