These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21221449)

  • 1. Tailorable integrated optofluidic filters for biomolecular detection.
    Measor P; Phillips BS; Chen A; Hawkins AR; Schmidt H
    Lab Chip; 2011 Mar; 11(5):899-904. PubMed ID: 21221449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-core optofluidic chip for independent particle detection and tunable spectral filtering.
    Ozcelik D; Phillips BS; Parks JW; Measor P; Gulbransen D; Hawkins AR; Schmidt H
    Lab Chip; 2012 Oct; 12(19):3728-33. PubMed ID: 22864667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic notch filter integration by lift-off of thin films.
    Phillips BS; Measor P; Zhao Y; Schmidt H; Hawkins AR
    Opt Express; 2010 Mar; 18(5):4790-5. PubMed ID: 20389492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.
    Persichetti G; Grimaldi IA; Testa G; Bernini R
    Lab Chip; 2017 Jul; 17(15):2631-2639. PubMed ID: 28664956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid optofluidic integration.
    Parks JW; Cai H; Zempoaltecatl L; Yuzvinsky TD; Leake K; Hawkins AR; Schmidt H
    Lab Chip; 2013 Oct; 13(20):4118-23. PubMed ID: 23969694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.
    Cuennet JG; Vasdekis AE; Psaltis D
    Lab Chip; 2013 Jul; 13(14):2721-6. PubMed ID: 23752198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels.
    Oh YJ; Jeong KH
    Lab Chip; 2014 Mar; 14(5):865-8. PubMed ID: 24452813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontiers of optofluidics in synthetic biology.
    Tan C; Lo SJ; LeDuc PR; Cheng CM
    Lab Chip; 2012 Oct; 12(19):3654-65. PubMed ID: 22895798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the spectral response of liquid waveguide diagnostic platforms.
    Zhao Y; Phillips B; Ozcelik D; Parks J; Measor P; Gulbransen D; Schmidt H; Hawkins AR
    J Biophotonics; 2012 Aug; 5(8-9):703-11. PubMed ID: 22589084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Spatial-Spectral Multiplexing of Single-Virus Detection Using Multimode Interference Waveguides.
    Ozcelik D; Jain A; Stambaugh A; Stott MA; Parks JW; Hawkins A; Schmidt H
    Sci Rep; 2017 Sep; 7(1):12199. PubMed ID: 28939852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip.
    Chen A; Eberle MM; Lunt EJ; Liu S; Leake K; Rudenko MI; Hawkins AR; Schmidt H
    Lab Chip; 2011 Apr; 11(8):1502-6. PubMed ID: 21340094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem.
    Yazdi SH; White IM
    Analyst; 2013 Jan; 138(1):100-3. PubMed ID: 23103967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy.
    Rickard JJS; Di-Pietro V; Smith DJ; Davies DJ; Belli A; Oppenheimer PG
    Nat Biomed Eng; 2020 Jun; 4(6):610-623. PubMed ID: 32015408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers.
    Perozziello G; Candeloro P; De Grazia A; Esposito F; Allione M; Coluccio ML; Tallerico R; Valpapuram I; Tirinato L; Das G; Giugni A; Torre B; Veltri P; Kruhne U; Della Valle G; Di Fabrizio E
    Opt Express; 2016 Jan; 24(2):A180-90. PubMed ID: 26832572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible optofluidic waveguide platform with multi-dimensional reconfigurability.
    Parks JW; Schmidt H
    Sci Rep; 2016 Sep; 6():33008. PubMed ID: 27597164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tunable submicro-optofluidic polymer filter based on guided-mode resonance.
    Xiao G; Zhu Q; Shen Y; Li K; Liu M; Zhuang Q; Jin C
    Nanoscale; 2015 Feb; 7(8):3429-34. PubMed ID: 25630880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microfluidic biophotonic chip for laser induced fluorescence detection.
    Chandrasekaran A; Packirisamy M
    Biomed Microdevices; 2010 Oct; 12(5):923-33. PubMed ID: 20563752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic wavelength division multiplexing for single-virus detection.
    Ozcelik D; Parks JW; Wall TA; Stott MA; Cai H; Parks JW; Hawkins AR; Schmidt H
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):12933-7. PubMed ID: 26438840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.