BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21221732)

  • 1. Formation and properties of magnesium-ammonium-phosphate hexahydrate biocements in the Ca-Mg-PO4 system.
    Vorndran E; Ewald A; Müller FA; Zorn K; Kufner A; Gbureck U
    J Mater Sci Mater Med; 2011 Mar; 22(3):429-36. PubMed ID: 21221732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectability and mechanical properties of magnesium phosphate cements.
    Moseke C; Saratsis V; Gbureck U
    J Mater Sci Mater Med; 2011 Dec; 22(12):2591-8. PubMed ID: 21915697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated bone regeneration through rational design of magnesium phosphate cements.
    Kaiser F; Schröter L; Stein S; Krüger B; Weichhold J; Stahlhut P; Ignatius A; Gbureck U
    Acta Biomater; 2022 Jun; 145():358-371. PubMed ID: 35443213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.
    Klammert U; Vorndran E; Reuther T; Müller FA; Zorn K; Gbureck U
    J Mater Sci Mater Med; 2010 Nov; 21(11):2947-53. PubMed ID: 20740307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the properties of magnesium phosphate-based bone cements: Effect of powder to liquid ratio and aqueous solution concentration.
    Gelli R; Mati L; Ridi F; Baglioni P
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():248-255. PubMed ID: 30573247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility.
    Schaufler C; Schmitt AM; Moseke C; Stahlhut P; Geroneit I; Brückner M; Meyer-Lindenberg A; Vorndran E
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36541469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis, setting properties and in vitro characterization of wollastonite/newberyite bone cement mixtures.
    Sopcak T; Medvecky L; Giretova M; Stulajterova R; Durisin J
    J Biomater Appl; 2018 Feb; 32(7):871-885. PubMed ID: 29224421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel magnesium phosphate cements with high early strength and antibacterial properties.
    Mestres G; Ginebra MP
    Acta Biomater; 2011 Apr; 7(4):1853-61. PubMed ID: 21147277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of polymeric additives on the mechanical properties of alpha-tricalcium phosphate cement.
    dos Santos LA; De Oliveria LC; Rigo EC; Carrodeguas RG; Boschi AO; De Arruda AC
    Bone; 1999 Aug; 25(2 Suppl):99S-102S. PubMed ID: 10458286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration.
    Wu F; Su J; Wei J; Guo H; Liu C
    Biomed Mater; 2008 Dec; 3(4):044105. PubMed ID: 19029607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strontium modified biocements with zero order release kinetics.
    Hamdan Alkhraisat M; Moseke C; Blanco L; Barralet JE; Lopez-Carbacos E; Gbureck U
    Biomaterials; 2008 Dec; 29(35):4691-7. PubMed ID: 18804862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.
    Christel T; Geffers M; Klammert U; Nies B; Höß A; Groll J; Kübler AC; Gbureck U
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():130-6. PubMed ID: 25063102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical properties of the novel biphasic hydroxyapatite-magnesium phosphate biomaterial.
    Pijocha D; Zima A; Paszkiewicz Z; Ślósarczyk A
    Acta Bioeng Biomech; 2013; 15(3):53-63. PubMed ID: 24215450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites.
    Sopcak T; Medvecky L; Giretova M; Kovalcikova A; Stulajterova R; Durisin J
    Biomed Mater; 2016 Aug; 11(4):045013. PubMed ID: 27509265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive tetracalcium phosphate/magnesium phosphate composite bone cement for bone repair.
    Liu J; Liao J; Li Y; Yang Z; Ying Q; Xie Y; Zhou A
    J Biomater Appl; 2019 Aug; 34(2):239-249. PubMed ID: 31042122
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model.
    Klammert U; Ignatius A; Wolfram U; Reuther T; Gbureck U
    Acta Biomater; 2011 Sep; 7(9):3469-75. PubMed ID: 21658480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration.
    Wu F; Wei J; Guo H; Chen F; Hong H; Liu C
    Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.