These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 21222117)
1. Effect of acyl chain structure and bilayer phase state on binding and penetration of a supported lipid bilayer by HPA3. Hirst DJ; Lee TH; Swann MJ; Unabia S; Park Y; Hahm KS; Aguilar MI Eur Biophys J; 2011 Apr; 40(4):503-14. PubMed ID: 21222117 [TBL] [Abstract][Full Text] [Related]
2. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Lee TH; Hall KN; Swann MJ; Popplewell JF; Unabia S; Park Y; Hahm KS; Aguilar MI Biochim Biophys Acta; 2010 Mar; 1798(3):544-57. PubMed ID: 20100457 [TBL] [Abstract][Full Text] [Related]
3. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. Hirst DJ; Lee TH; Kulkarni K; Wilce JA; Aguilar MI Biochim Biophys Acta; 2016 Aug; 1858(8):1841-9. PubMed ID: 27163492 [TBL] [Abstract][Full Text] [Related]
4. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
5. The role played by lipids unsaturation upon the membrane interaction of the Helicobacter pylori HP(2-20) antimicrobial peptide analogue HPA3. Mereuta L; Luchian T; Park Y; Hahm KS J Bioenerg Biomembr; 2009 Feb; 41(1):79-84. PubMed ID: 19294495 [TBL] [Abstract][Full Text] [Related]
6. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
7. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers. Fernandez DI; Sani MA; Gehman JD; Hahm KS; Separovic F Eur Biophys J; 2011 Apr; 40(4):471-80. PubMed ID: 21225256 [TBL] [Abstract][Full Text] [Related]
8. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797 [TBL] [Abstract][Full Text] [Related]
9. Comparison of bacteriorhodopsin/phospholipid interactions in DMPC and DMPG bilayers: an electron spin resonance spectroscopy and freeze-fracture electron microscopy study. Gale P Biochem Biophys Res Commun; 1993 Oct; 196(2):879-84. PubMed ID: 8240365 [TBL] [Abstract][Full Text] [Related]
10. Using micropatterned lipid bilayer arrays to measure the effect of membrane composition on merocyanine 540 binding. Smith KA; Conboy JC Biochim Biophys Acta; 2011 Jun; 1808(6):1611-7. PubMed ID: 21376014 [TBL] [Abstract][Full Text] [Related]
11. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
12. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
13. Combined mass and structural kinetic analysis of multistate antimicrobial peptide-membrane interactions. Hirst DJ; Lee TH; Swann MJ; Aguilar MI Anal Chem; 2013 Oct; 85(19):9296-304. PubMed ID: 23998643 [TBL] [Abstract][Full Text] [Related]
14. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202 [TBL] [Abstract][Full Text] [Related]
15. Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Fernandez DI; Lee TH; Sani MA; Aguilar MI; Separovic F Biophys J; 2013 Apr; 104(7):1495-507. PubMed ID: 23561526 [TBL] [Abstract][Full Text] [Related]
16. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains. Lee H J Mol Graph Model; 2015 Jul; 60():162-8. PubMed ID: 26055631 [TBL] [Abstract][Full Text] [Related]
17. Mutual structural effect of bilirubin and model membranes by vibrational circular dichroism. Novotná P; Goncharova I; Urbanová M Biochim Biophys Acta; 2014 Mar; 1838(3):831-41. PubMed ID: 24355499 [TBL] [Abstract][Full Text] [Related]
18. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Thennarasu S; Tan A; Penumatchu R; Shelburne CE; Heyl DL; Ramamoorthy A Biophys J; 2010 Jan; 98(2):248-57. PubMed ID: 20338846 [TBL] [Abstract][Full Text] [Related]
20. Reconstitution of KCNE1 into lipid bilayers: comparing the structural, dynamic, and activity differences in micelle and vesicle environments. Coey AT; Sahu ID; Gunasekera TS; Troxel KR; Hawn JM; Swartz MS; Wickenheiser MR; Reid RJ; Welch RC; Vanoye CG; Kang C; Sanders CR; Lorigan GA Biochemistry; 2011 Dec; 50(50):10851-9. PubMed ID: 22085289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]