These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21222198)

  • 1. Autosomal lyonization of replication domains during early Mammalian development.
    Hiratani I; Gilbert DM
    Adv Exp Med Biol; 2010; 695():41-58. PubMed ID: 21222198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis.
    Hiratani I; Ryba T; Itoh M; Rathjen J; Kulik M; Papp B; Fussner E; Bazett-Jones DP; Plath K; Dalton S; Rathjen PD; Gilbert DM
    Genome Res; 2010 Feb; 20(2):155-69. PubMed ID: 19952138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new light on DNA replication from the inactive X chromosome.
    Aladjem MI; Fu H
    Bioessays; 2014 Jun; 36(6):591-7. PubMed ID: 24706495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome.
    Schwaiger M; Stadler MB; Bell O; Kohler H; Oakeley EJ; Schübeler D
    Genes Dev; 2009 Mar; 23(5):589-601. PubMed ID: 19270159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide stability of the DNA replication program in single mammalian cells.
    Takahashi S; Miura H; Shibata T; Nagao K; Okumura K; Ogata M; Obuse C; Takebayashi SI; Hiratani I
    Nat Genet; 2019 Mar; 51(3):529-540. PubMed ID: 30804559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain-wide regulation of DNA replication timing during mammalian development.
    Pope BD; Hiratani I; Gilbert DM
    Chromosome Res; 2010 Jan; 18(1):127-36. PubMed ID: 20013151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA replication and transcription programs respond to the same chromatin cues.
    Lubelsky Y; Prinz JA; DeNapoli L; Li Y; Belsky JA; MacAlpine DM
    Genome Res; 2014 Jul; 24(7):1102-14. PubMed ID: 24985913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random replication of the inactive X chromosome.
    Koren A; McCarroll SA
    Genome Res; 2014 Jan; 24(1):64-9. PubMed ID: 24065775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome replicating timing combined with fluorescent in situ hybridization.
    Smith L; Thayer M
    J Vis Exp; 2012 Dec; (70):e4400. PubMed ID: 23271586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental control of replication timing defines a new breed of chromosomal domains with a novel mechanism of chromatin unfolding.
    Takebayashi S; Ryba T; Gilbert DM
    Nucleus; 2012; 3(6):500-7. PubMed ID: 23023599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASAR15, A cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15.
    Donley N; Smith L; Thayer MJ
    PLoS Genet; 2015 Jan; 11(1):e1004923. PubMed ID: 25569254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional nuclear organisation and the DNA replication timing program.
    Chen N; Buonomo SCB
    Curr Opin Struct Biol; 2023 Dec; 83():102704. PubMed ID: 37741142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in the mouse.
    Diaz-Perez S; Ouyang Y; Perez V; Cisneros R; Regelson M; Marahrens Y
    Genetics; 2005 Oct; 171(2):663-72. PubMed ID: 15972460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication timing: Coordinating genome stability with genome regulation on the X chromosome and beyond.
    Koren A
    Bioessays; 2014 Oct; 36(10):997-1004. PubMed ID: 25138663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space and time in the nucleus: developmental control of replication timing and chromosome architecture.
    Gilbert DM; Takebayashi SI; Ryba T; Lu J; Pope BD; Wilson KA; Hiratani I
    Cold Spring Harb Symp Quant Biol; 2010; 75():143-53. PubMed ID: 21139067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication timing and transcriptional control: beyond cause and effect-part III.
    Rivera-Mulia JC; Gilbert DM
    Curr Opin Cell Biol; 2016 Jun; 40():168-178. PubMed ID: 27115331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells.
    Corbel C; Diabangouaya P; Gendrel AV; Chow JC; Heard E
    Development; 2013 Feb; 140(4):861-72. PubMed ID: 23362347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chromatin modifications during X-chromosome inactivation in female mammals].
    Shevchenko AI; Pavlova SV; Dement'eva EV; Golubeva DV; Zakiian SM
    Genetika; 2006 Sep; 42(9):1225-34. PubMed ID: 17100090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replication Domains: Genome Compartmentalization into Functional Replication Units.
    Zhao PA; Rivera-Mulia JC; Gilbert DM
    Adv Exp Med Biol; 2017; 1042():229-257. PubMed ID: 29357061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.