These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 2122235)
1. Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae. Madden SL; Johnson DL; Bergman LW Mol Cell Biol; 1990 Nov; 10(11):5950-7. PubMed ID: 2122235 [TBL] [Abstract][Full Text] [Related]
2. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins. Gilliquet V; Legrain M; Berben G; Hilger F Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431 [TBL] [Abstract][Full Text] [Related]
3. Negative regulators of the PHO system of Saccharomyces cerevisiae: characterization of PHO80 and PHO85. Uesono Y; Tokai M; Tanaka K; Tohe A Mol Gen Genet; 1992 Feb; 231(3):426-32. PubMed ID: 1538698 [TBL] [Abstract][Full Text] [Related]
4. [Studies on the cloning, expression and function of the yeast PHO 80 gene]. Zhao Y; Ao S Yi Chuan Xue Bao; 1996; 23(2):142-8. PubMed ID: 8695181 [TBL] [Abstract][Full Text] [Related]
11. Structure and expression of the PHO80 gene of Saccharomyces cerevisiae. Madden SL; Creasy CL; Srinivas V; Fawcett W; Bergman LW Nucleic Acids Res; 1988 Mar; 16(6):2625-37. PubMed ID: 3283704 [TBL] [Abstract][Full Text] [Related]
12. Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85. Uesono Y; Tanaka K; Toh-e A Nucleic Acids Res; 1987 Dec; 15(24):10299-309. PubMed ID: 3320965 [TBL] [Abstract][Full Text] [Related]
13. A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae. Nicolson TA; Weisman LS; Payne GS; Wickner WT J Cell Biol; 1995 Aug; 130(4):835-45. PubMed ID: 7642701 [TBL] [Abstract][Full Text] [Related]
14. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal. Hirst K; Fisher F; McAndrew PC; Goding CR EMBO J; 1994 Nov; 13(22):5410-20. PubMed ID: 7957107 [TBL] [Abstract][Full Text] [Related]
15. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Ogawa N; Oshima Y Mol Cell Biol; 1990 May; 10(5):2224-36. PubMed ID: 2183025 [TBL] [Abstract][Full Text] [Related]
16. Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae. Bitter GA Mol Gen Genet; 1998 Oct; 260(1):120-30. PubMed ID: 9829836 [TBL] [Abstract][Full Text] [Related]
17. A novel mutation occurring in the PHO80 gene suppresses the PHO4c mutations of Saccharomyces cerevisiae. Okada H; Toh-e A Curr Genet; 1992 Feb; 21(2):95-9. PubMed ID: 1568260 [TBL] [Abstract][Full Text] [Related]
18. A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation. Huang S; O'Shea EK Genetics; 2005 Apr; 169(4):1859-71. PubMed ID: 15695358 [TBL] [Abstract][Full Text] [Related]
19. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Measday V; Moore L; Retnakaran R; Lee J; Donoviel M; Neiman AM; Andrews B Mol Cell Biol; 1997 Mar; 17(3):1212-23. PubMed ID: 9032248 [TBL] [Abstract][Full Text] [Related]
20. Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae. Toh-e A; Shimauchi T Yeast; 1986 Jun; 2(2):129-39. PubMed ID: 3333302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]