These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2122235)

  • 1. Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae.
    Madden SL; Johnson DL; Bergman LW
    Mol Cell Biol; 1990 Nov; 10(11):5950-7. PubMed ID: 2122235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins.
    Gilliquet V; Legrain M; Berben G; Hilger F
    Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative regulators of the PHO system of Saccharomyces cerevisiae: characterization of PHO80 and PHO85.
    Uesono Y; Tokai M; Tanaka K; Tohe A
    Mol Gen Genet; 1992 Feb; 231(3):426-32. PubMed ID: 1538698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Studies on the cloning, expression and function of the yeast PHO 80 gene].
    Zhao Y; Ao S
    Yi Chuan Xue Bao; 1996; 23(2):142-8. PubMed ID: 8695181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae.
    Lemire JM; Willcocks T; Halvorson HO; Bostian KA
    Mol Cell Biol; 1985 Aug; 5(8):2131-41. PubMed ID: 3915785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85.
    Kaffman A; Herskowitz I; Tjian R; O'Shea EK
    Science; 1994 Feb; 263(5150):1153-6. PubMed ID: 8108735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated expression of stress response genes resulting from deletion of the PHO85 gene.
    Timblin BK; Bergman LW
    Mol Microbiol; 1997 Dec; 26(5):981-90. PubMed ID: 9426135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationships of the yeast cyclin-dependent kinase Pho85.
    Santos RC; Waters NC; Creasy CL; Bergman LW
    Mol Cell Biol; 1995 Oct; 15(10):5482-91. PubMed ID: 7565699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae.
    Timblin BK; Tatchell K; Bergman LW
    Genetics; 1996 May; 143(1):57-66. PubMed ID: 8722762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast Pho80-Pho85 cyclin-CDK complex has multiple substrates.
    Waters NC; Knight JP; Creasy CL; Bergman LW
    Curr Genet; 2004 Jul; 46(1):1-9. PubMed ID: 15057567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and expression of the PHO80 gene of Saccharomyces cerevisiae.
    Madden SL; Creasy CL; Srinivas V; Fawcett W; Bergman LW
    Nucleic Acids Res; 1988 Mar; 16(6):2625-37. PubMed ID: 3283704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85.
    Uesono Y; Tanaka K; Toh-e A
    Nucleic Acids Res; 1987 Dec; 15(24):10299-309. PubMed ID: 3320965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae.
    Nicolson TA; Weisman LS; Payne GS; Wickner WT
    J Cell Biol; 1995 Aug; 130(4):835-45. PubMed ID: 7642701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.
    Hirst K; Fisher F; McAndrew PC; Goding CR
    EMBO J; 1994 Nov; 13(22):5410-20. PubMed ID: 7957107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae.
    Ogawa N; Oshima Y
    Mol Cell Biol; 1990 May; 10(5):2224-36. PubMed ID: 2183025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae.
    Bitter GA
    Mol Gen Genet; 1998 Oct; 260(1):120-30. PubMed ID: 9829836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mutation occurring in the PHO80 gene suppresses the PHO4c mutations of Saccharomyces cerevisiae.
    Okada H; Toh-e A
    Curr Genet; 1992 Feb; 21(2):95-9. PubMed ID: 1568260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation.
    Huang S; O'Shea EK
    Genetics; 2005 Apr; 169(4):1859-71. PubMed ID: 15695358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase.
    Measday V; Moore L; Retnakaran R; Lee J; Donoviel M; Neiman AM; Andrews B
    Mol Cell Biol; 1997 Mar; 17(3):1212-23. PubMed ID: 9032248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae.
    Toh-e A; Shimauchi T
    Yeast; 1986 Jun; 2(2):129-39. PubMed ID: 3333302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.