BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21222488)

  • 1. Transition state analysis of the arsenolytic depyrimidination of thymidine by human thymidine phosphorylase.
    Schwartz PA; Vetticatt MJ; Schramm VL
    Biochemistry; 2011 Mar; 50(8):1412-20. PubMed ID: 21222488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition state analysis of thymidine hydrolysis by human thymidine phosphorylase.
    Schwartz PA; Vetticatt MJ; Schramm VL
    J Am Chem Soc; 2010 Sep; 132(38):13425-33. PubMed ID: 20804144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleophilic participation in the transition state for human thymidine phosphorylase.
    Birck MR; Schramm VL
    J Am Chem Soc; 2004 Mar; 126(8):2447-53. PubMed ID: 14982453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-state analysis of Trypanosoma cruzi uridine phosphorylase-catalyzed arsenolysis of uridine.
    Silva RG; Vetticatt MJ; Merino EF; Cassera MB; Schramm VL
    J Am Chem Soc; 2011 Jun; 133(25):9923-31. PubMed ID: 21599004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenate and phosphate as nucleophiles at the transition states of human purine nucleoside phosphorylase.
    Silva RG; Hirschi JS; Ghanem M; Murkin AS; Schramm VL
    Biochemistry; 2011 Apr; 50(13):2701-9. PubMed ID: 21348499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding causes the remote [5'-3H]thymidine kinetic isotope effect in human thymidine phosphorylase.
    Birck MR; Schramm VL
    J Am Chem Soc; 2004 Jun; 126(22):6882-3. PubMed ID: 15174854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase.
    Kline PC; Schramm VL
    Biochemistry; 1995 Jan; 34(4):1153-62. PubMed ID: 7827065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases.
    Lewandowicz A; Schramm VL
    Biochemistry; 2004 Feb; 43(6):1458-68. PubMed ID: 14769022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of phosphate in the action of thymidine phosphorylase inhibitors: Implications for the catalytic mechanism.
    Jain HV; Rasheed R; Kalman TI
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1648-51. PubMed ID: 20138520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of histidine-85 in the catalytic mechanism of thymidine phosphorylase as assessed by targeted molecular dynamics simulations and quantum mechanical calculations.
    Mendieta J; Martín-Santamaría S; Priego EM; Balzarini J; Camarasa MJ; Pérez-Pérez MJ; Gago F
    Biochemistry; 2004 Jan; 43(2):405-14. PubMed ID: 14717594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-state structure of human 5'-methylthioadenosine phosphorylase.
    Singh V; Schramm VL
    J Am Chem Soc; 2006 Nov; 128(45):14691-6. PubMed ID: 17090056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic parameters and recognition of thymidine analogues with varying functional groups by thymidine phosphorylase.
    Hatano A; Harano A; Takigawa Y; Naramoto Y; Toda K; Nakagomi Y; Yamada H
    Bioorg Med Chem; 2008 Apr; 16(7):3866-70. PubMed ID: 18272369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design.
    El Omari K; Bronckaers A; Liekens S; Pérez-Pérez MJ; Balzarini J; Stammers DK
    Biochem J; 2006 Oct; 399(2):199-204. PubMed ID: 16803458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction.
    Kline PC; Schramm VL
    Biochemistry; 1993 Dec; 32(48):13212-9. PubMed ID: 8241176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetic mechanism of Human Thymidine Phosphorylase - a molecular target for cancer drug development.
    Deves C; Rostirolla DC; Martinelli LK; Bizarro CV; Santos DS; Basso LA
    Mol Biosyst; 2014 Mar; 10(3):592-604. PubMed ID: 24407036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity of Escherichia coli thymidine phosphorylase.
    Panova NG; Alexeev CS; Kuzmichov AS; Shcheveleva EV; Gavryushov SA; Polyakov KM; Kritzyn AM; Mikhailov SN; Esipov RS; Miroshnikov AI
    Biochemistry (Mosc); 2007 Jan; 72(1):21-8. PubMed ID: 17309433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of thiol-supported arsenate reduction mediated by phosphorolytic-arsenolytic enzymes: I. The role of arsenolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2009 Aug; 110(2):270-81. PubMed ID: 19474219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards new thymidine phosphorylase/PD-ECGF inhibitors based on the transition state of the enzyme reaction.
    Priego EM; Mendieta J; Gago F; Balzarini J; De Clercq E; Camarasa MJ; Pérez-Pérez MJ
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):951-3. PubMed ID: 14565319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.