BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21222561)

  • 1. Deposition of naphthalene and tetradecane vapors in models of the human respiratory system.
    Zhang Z; Kleinstreuer C
    Inhal Toxicol; 2011 Jan; 23(1):44-57. PubMed ID: 21222561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and uptake of MTBE and ethanol vapors in a human upper airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Inhal Toxicol; 2006 Mar; 18(3):169-84. PubMed ID: 16399659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient absorption of inhaled vapors into a multilayer mucus-tissue-blood system.
    Tian G; Longest PW
    Ann Biomed Eng; 2010 Feb; 38(2):517-36. PubMed ID: 19826954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inspiratory and expiratory aerosol deposition in the upper airway.
    Verbanck S; Kalsi HS; Biddiscombe MF; Agnihotri V; Belkassem B; Lacor C; Usmani OS
    Inhal Toxicol; 2011 Feb; 23(2):104-11. PubMed ID: 21309663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a CFD boundary condition to model transient vapor absorption in the respiratory airways.
    Tian G; Longest PW
    J Biomech Eng; 2010 May; 132(5):051003. PubMed ID: 20459204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive determination of respiratory ozone absorption: the bolus-response method.
    Ultman JS; Ben-Jebria A; Hu SC
    Res Rep Health Eff Inst; 1994 Aug; (69):1-27; discussion 29-42. PubMed ID: 7999333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative mixture effects of JP-8(100) additives on the dermal absorption and disposition of jet fuel hydrocarbons in different membrane model systems.
    Muhammad F; Brooks JD; Riviere JE
    Toxicol Lett; 2004 May; 150(3):351-65. PubMed ID: 15110087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.
    Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D
    J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative in vivo toxicity of topical JP-8 jet fuel and its individual hydrocarbon components: identification of tridecane and tetradecane as key constituents responsible for dermal irritation.
    Muhammad F; Monteiro-Riviere NA; Riviere JE
    Toxicol Pathol; 2005; 33(2):258-66. PubMed ID: 15902969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles.
    Xi J; Longest PW
    J Biomech Eng; 2008 Feb; 130(1):011008. PubMed ID: 18298184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.
    Merchant-Borna K; Rodrigues EG; Smith KW; Proctor SP; McClean MD
    Ann Occup Hyg; 2012 Jul; 56(6):736-45. PubMed ID: 22433121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract.
    Stahlhofen W; Gebhart J; Heyder J
    Am Ind Hyg Assoc J; 1980 Jun; 41(6):385-98a. PubMed ID: 7395752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model.
    Shi H; Kleinstreuer C; Zhang Z
    J Biomech Eng; 2006 Oct; 128(5):697-706. PubMed ID: 16995756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a new dosimetry program TAOCS to assess transient vapour absorption in the upper airways.
    Tian G; Longest PW
    Inhal Toxicol; 2010 Nov; 22(13):1047-63. PubMed ID: 21070181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhalation dosimetry of hexamethylene diisocyanate vapor in the rat and human respiratory tracts.
    Schroeter JD; Kimbell JS; Asgharian B; Tewksbury EW; Sochaski M; Foster ML; Dorman DC; Wong BA; Andersen ME
    Inhal Toxicol; 2013 Feb; 25(3):168-77. PubMed ID: 23421488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dermal absorption and distribution of topically dosed jet fuels jet-A, JP-8, and JP-8(100).
    Riviere JE; Brooks JD; Monteiro-Riviere NA; Budsaba K; Smith CE
    Toxicol Appl Pharmacol; 1999 Oct; 160(1):60-75. PubMed ID: 10502503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract.
    Sturm R; Hofmann W
    J Hazard Mater; 2009 Oct; 170(1):210-8. PubMed ID: 19477590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-dependent production of urinary naphthols among workers exposed to jet fuel (JP-8).
    Serdar B; Egeghy PP; Gibson R; Rappaport SM
    Am J Ind Med; 2004 Sep; 46(3):234-44. PubMed ID: 15307122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.