BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21222561)

  • 21. In situ measurement of vapor uptake in the rodent upper respiratory tract.
    Morris JB; Cichocki JA; Smith GJ
    Curr Protoc Toxicol; 2013 Feb; Chapter 24():Unit 24.1. PubMed ID: 23408196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation and minimisation of the airway deposition of airborne bacteria.
    Balásházy I; Horváth A; Sárkány Z; Farkas A; Hofmann W
    Inhal Toxicol; 2009 Oct; 21(12):1021-9. PubMed ID: 19772481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixture effects of JP-8 additives on the dermal disposition of jet fuel components.
    Baynes RE; Brooks JD; Budsaba K; Smith CE; Riviere JE
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):269-81. PubMed ID: 11559026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biologically-based modeling insights in inhaled vapor absorption and dosimetry.
    Morris JB
    Pharmacol Ther; 2012 Dec; 136(3):401-13. PubMed ID: 22964085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult.
    Xi J; Berlinski A; Zhou Y; Greenberg B; Ou X
    Ann Biomed Eng; 2012 Dec; 40(12):2579-95. PubMed ID: 22660850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of in vivo jet fuel exposure on subsequent in vitro dermal absorption of individual aromatic and aliphatic hydrocarbon fuel constituents.
    Muhammad F; Monteiro-Riviere NA; Baynes RE; Riviere JE
    J Toxicol Environ Health A; 2005 May; 68(9):719-37. PubMed ID: 16020199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways.
    Frederick CB; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):211-31. PubMed ID: 9772217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.
    Martin SA; Campbell JL; Tremblay RT; Fisher JW
    Inhal Toxicol; 2012 Jan; 24(1):1-26. PubMed ID: 22188408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An in vitro study on the deposition of micrometer-sized particles in the extrathoracic airways of adults during tidal oral breathing.
    Golshahi L; Noga ML; Vehring R; Finlay WH
    Ann Biomed Eng; 2013 May; 41(5):979-89. PubMed ID: 23358802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A lung dosimetry model of vapor uptake and tissue disposition.
    Asgharian B; Price OT; Schroeter JD; Kimbell JS; Singal M
    Inhal Toxicol; 2012 Feb; 24(3):182-93. PubMed ID: 22369194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.
    Tremblay RT; Martin SA; Fisher JW
    Inhal Toxicol; 2011 Jan; 23(1):11-6. PubMed ID: 21222558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways.
    Kleinstreuer C; Zhang Z
    J Biomech Eng; 2009 Feb; 131(2):021007. PubMed ID: 19102566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Ann Biomed Eng; 2008 Dec; 36(12):2095-110. PubMed ID: 18850271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interspecies comparisons of particle deposition and mucociliary clearance in tracheobronchial airways.
    Lippmann M; Schlesinger RB
    J Toxicol Environ Health; 1984; 13(2-3):441-69. PubMed ID: 6376822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deposition pattern of droplets from medical nebulizers in the human respiratory tract.
    Stahlhofen W; Gebhart J; Heyder J; Scheuch G
    Bull Eur Physiopathol Respir; 1983; 19(5):459-63. PubMed ID: 6640164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation.
    Carrigy NB; Ruzycki CA; Golshahi L; Finlay WH
    J Aerosol Med Pulm Drug Deliv; 2014 Jun; 27(3):149-69. PubMed ID: 24870701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deposition of inhaled particulate matter in the upper respiratory tract, larynx, and bronchial airways: a mathematical description.
    Martonen T
    J Toxicol Environ Health; 1983; 12(4-6):787-800. PubMed ID: 6668624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical models for dynamic shape factors and lung deposition of small particle aggregates originating from combustion processes.
    Sturm R
    Z Med Phys; 2010; 20(3):226-34. PubMed ID: 20832009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.