BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21222621)

  • 1. Structure and function relationship in prolyl oligopeptidase.
    Van Elzen R; Lambeir AM
    CNS Neurol Disord Drug Targets; 2011 May; 10(3):297-305. PubMed ID: 21222621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolyl oligopeptidase structure and dynamics.
    Rea D; Fülöp V
    CNS Neurol Disord Drug Targets; 2011 May; 10(3):306-10. PubMed ID: 21222626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding.
    Szeltner Z; Rea D; Juhász T; Renner V; Fülöp V; Polgár L
    J Mol Biol; 2004 Jul; 340(3):627-37. PubMed ID: 15210359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxypeptidase in prolyl oligopeptidase family: Unique enzyme activation and substrate-screening mechanisms.
    Yadav P; Goyal VD; Gaur NK; Kumar A; Gokhale SM; Jamdar SN; Makde RD
    J Biol Chem; 2019 Jan; 294(1):89-100. PubMed ID: 30409909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The loops facing the active site of prolyl oligopeptidase are crucial components in substrate gating and specificity.
    Szeltner Z; Juhász T; Szamosi I; Rea D; Fülöp V; Módos K; Juliano L; Polgár L
    Biochim Biophys Acta; 2013 Jan; 1834(1):98-111. PubMed ID: 22940581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function properties of prolyl oligopeptidase family enzymes.
    Rea D; Fülöp V
    Cell Biochem Biophys; 2006; 44(3):349-65. PubMed ID: 16679522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, function and biological relevance of prolyl oligopeptidase.
    Szeltner Z; Polgár L
    Curr Protein Pept Sci; 2008 Feb; 9(1):96-107. PubMed ID: 18336325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells.
    Bastos IM; Grellier P; Martins NF; Cadavid-Restrepo G; de Souza-Ault MR; Augustyns K; Teixeira AR; Schrével J; Maigret B; da Silveira JF; Santana JM
    Biochem J; 2005 May; 388(Pt 1):29-38. PubMed ID: 15581422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hunting for peptide substrates of prolyl oligopeptidase: classical versus non-classical bioactive peptides.
    Tenorio-Laranga J; Männistö PT; García-Horsman JA
    CNS Neurol Disord Drug Targets; 2011 May; 10(3):319-26. PubMed ID: 21222622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The noncatalytic beta-propeller domain of prolyl oligopeptidase enhances the catalytic capability of the peptidase domain.
    Szeltner Z; Renner V; Polgár L
    J Biol Chem; 2000 May; 275(20):15000-5. PubMed ID: 10747969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity modulation of the oligopeptidase B from Serratia proteamaculans by site-directed mutagenesis of amino acid residues surrounding catalytic triad histidine.
    Mikhailova AG; Rakitina TV; Timofeev VI; Karlinsky DM; Korzhenevskiy DA; Agapova YК; Vlaskina AV; Ovchinnikova MV; Gorlenko VA; Rumsh LD
    Biochimie; 2017 Aug; 139():125-136. PubMed ID: 28554571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxidation of the non-catalytic β-propeller domain on the substrate specificity of prolyl oligopeptidase from Pleurotus eryngii.
    Tokai S; Bito T; Shimizu K; Arima J
    Biochem Biophys Res Commun; 2017 May; 487(2):356-361. PubMed ID: 28414130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways.
    Fuxreiter M; Magyar C; Juhász T; Szeltner Z; Polgár L; Simon I
    Proteins; 2005 Aug; 60(3):504-12. PubMed ID: 15971204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer (FRET) peptides and cycloretro-inverso peptides derived from bradykinin as substrates and inhibitors of prolyl oligopeptidase.
    Gorrão SS; Hemerly JP; Lima AR; Melo RL; Szeltner Z; Polgár L; Juliano MA; Juliano L
    Peptides; 2007 Nov; 28(11):2146-54. PubMed ID: 17904692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methionine residues lining the substrate pathway in prolyl oligopeptidase from Pleurotus eryngii play an important role in substrate recognition.
    Tokai S; Bito T; Shimizu K; Arima J
    Biosci Biotechnol Biochem; 2018 Jul; 82(7):1107-1115. PubMed ID: 29623768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the structural events in substrate-gating mechanism of eukaryotic prolyl oligopeptidase using normal mode analysis and molecular dynamics simulations.
    Kaushik S; Etchebest C; Sowdhamini R
    Proteins; 2014 Jul; 82(7):1428-43. PubMed ID: 24500901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis.
    Fülöp V; Böcskei Z; Polgár L
    Cell; 1998 Jul; 94(2):161-70. PubMed ID: 9695945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligopeptidase B: a processing peptidase involved in pathogenesis.
    Coetzer TH; Goldring JP; Huson LE
    Biochimie; 2008 Feb; 90(2):336-44. PubMed ID: 18029266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Analysis of the Domain Architecture and Substrate-Gating Mechanism of Prolyl Oligopeptidases from Shewanella woodyi and Identification of Probable Lead Molecules.
    Patil P; Skariyachan S; Mutt E; Kaushik S
    Interdiscip Sci; 2016 Sep; 8(3):284-93. PubMed ID: 26298583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.