These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 21223989)
1. Functional aliphatic polyesters for biomedical and pharmaceutical applications. Seyednejad H; Ghassemi AH; van Nostrum CF; Vermonden T; Hennink WE J Control Release; 2011 May; 152(1):168-76. PubMed ID: 21223989 [TBL] [Abstract][Full Text] [Related]
2. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Jérôme C; Lecomte P Adv Drug Deliv Rev; 2008 Jun; 60(9):1056-76. PubMed ID: 18403043 [TBL] [Abstract][Full Text] [Related]
3. Recent developments in ring opening polymerization of lactones for biomedical applications. Albertsson AC; Varma IK Biomacromolecules; 2003; 4(6):1466-86. PubMed ID: 14606869 [TBL] [Abstract][Full Text] [Related]
4. Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization. Srivastava RK; Albertsson AC Biomacromolecules; 2006 Sep; 7(9):2531-8. PubMed ID: 16961314 [TBL] [Abstract][Full Text] [Related]
5. Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications. Seppälä J; Korhonen H; Hakala R; Malin M Macromol Biosci; 2011 Dec; 11(12):1647-52. PubMed ID: 22052651 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of functionalized biodegradable polyesters. Williams CK Chem Soc Rev; 2007 Oct; 36(10):1573-80. PubMed ID: 17721582 [TBL] [Abstract][Full Text] [Related]
7. Degradable polyesters via ring-opening polymerization of functional valerolactones for efficient gene delivery. Song L; Ding AX; Zhang KX; Gong B; Lu ZL; He L Org Biomol Chem; 2017 Aug; 15(31):6567-6574. PubMed ID: 28748978 [TBL] [Abstract][Full Text] [Related]
8. Ring-opening polymerization of cyclic esters by cyclodextrins. Harada A; Osaki M; Takashima Y; Yamaguchi H Acc Chem Res; 2008 Sep; 41(9):1143-52. PubMed ID: 18690725 [TBL] [Abstract][Full Text] [Related]
9. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Aliphatic Polyesters Synthesized via Enzymatic Ring-Opening Polymerization in Ionic Liquids. Piotrowska U; Sobczak M; Oledzka E Molecules; 2017 Jun; 22(6):. PubMed ID: 28574463 [TBL] [Abstract][Full Text] [Related]
11. Colonization and maintenance of murine embryonic stem cells on poly(alpha-hydroxy esters). Harrison J; Pattanawong S; Forsythe JS; Gross KA; Nisbet DR; Beh H; Scott TF; Trounson AO; Mollard R Biomaterials; 2004 Sep; 25(20):4963-70. PubMed ID: 15109857 [TBL] [Abstract][Full Text] [Related]
12. Fine control of polyester properties via epoxide ROP using monomers carrying diverse functional groups. You Z; Bi X; Wang Y Macromol Biosci; 2012 Jun; 12(6):822-9. PubMed ID: 22508547 [TBL] [Abstract][Full Text] [Related]
13. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Sosnowski S; Woźniak P; Lewandowska-Szumieł M Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274 [TBL] [Abstract][Full Text] [Related]
14. Alkali and Alkaline Earth Metal Complexes as Versatile Catalysts for Ring-Opening Polymerization of Cyclic Esters. Bhattacharjee J; Sarkar A; Panda TK Chem Rec; 2021 Aug; 21(8):1898-1911. PubMed ID: 34197009 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
16. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization. Yang J; Hao Q; Liu X; Ba C; Cao A Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028 [TBL] [Abstract][Full Text] [Related]
17. Degradation behaviors of electrospun resorbable polyester nanofibers. Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic polymerization of cyclic monomers in ionic liquids as a prospective synthesis method for polyesters used in drug delivery systems. Piotrowska U; Sobczak M Molecules; 2014 Dec; 20(1):1-23. PubMed ID: 25546617 [TBL] [Abstract][Full Text] [Related]
19. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone. Wang HF; Su W; Zhang C; Luo XH; Feng J Biomacromolecules; 2010 Oct; 11(10):2550-7. PubMed ID: 20836520 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate. Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]