BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21224003)

  • 1. Magnetic resonance imaging of the mean venous vessel size in the human brain using transient hyperoxia.
    Shen Y; Ahearn T; Clemence M; Schwarzbauer C
    Neuroimage; 2011 Apr; 55(3):1063-7. PubMed ID: 21224003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular component analysis of hyperoxic and hypercapnic BOLD contrast.
    Schwarzbauer C; Deichmann R
    Neuroimage; 2012 Feb; 59(3):2401-12. PubMed ID: 21945792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of venous vessel size in human brain in response to hypercapnia and hyperoxia using magnetic resonance imaging.
    Shen Y; Pu IM; Ahearn T; Clemence M; Schwarzbauer C
    Magn Reson Med; 2013 Jun; 69(6):1541-52. PubMed ID: 22489007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing specificity in functional magnetic resonance imaging by estimation of vessel size based on changes in blood oxygenation.
    Jochimsen TH; Möller HE
    Neuroimage; 2008 Mar; 40(1):228-36. PubMed ID: 18248738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat.
    Lu J; Dai G; Egi Y; Huang S; Kwon SJ; Lo EH; Kim YR
    Neuroimage; 2009 May; 45(4):1126-34. PubMed ID: 19118633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences.
    Cohen ER; Rostrup E; Sidaros K; Lund TE; Paulson OB; Ugurbil K; Kim SG
    Neuroimage; 2004 Oct; 23(2):613-24. PubMed ID: 15488411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-brain mapping of venous vessel size in humans using the hypercapnia-induced BOLD effect.
    Jochimsen TH; Ivanov D; Ott DV; Heinke W; Turner R; Möller HE; Reichenbach JR
    Neuroimage; 2010 Jun; 51(2):765-74. PubMed ID: 20188189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of visually evoked BOLD responses during carbogen inhalation: implications for calibrated MRI.
    Gauthier CJ; Madjar C; Tancredi FB; Stefanovic B; Hoge RD
    Neuroimage; 2011 Jan; 54(2):1001-11. PubMed ID: 20887792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps.
    Mannfolk P; Wirestam R; Nilsson M; van Westen D; Ståhlberg F; Olsrud J
    Magn Reson Imaging; 2010 Sep; 28(7):947-56. PubMed ID: 20573463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
    Wise RG; Ide K; Poulin MJ; Tracey I
    Neuroimage; 2004 Apr; 21(4):1652-64. PubMed ID: 15050588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced spatial localization of neuronal activation using simultaneous apparent-diffusion-coefficient and blood-oxygenation functional magnetic resonance imaging.
    Song AW; Woldorff MG; Gangstead S; Mangun GR; McCarthy G
    Neuroimage; 2002 Oct; 17(2):742-50. PubMed ID: 12377149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of tissue T1 spin-lattice relaxation time and discrimination of large draining veins using transient EPI data sets in BOLD-weighted fMRI acquisitions.
    Mazaheri Y; Biswal BB; Ward BD; Hyde JS
    Neuroimage; 2006 Aug; 32(2):603-15. PubMed ID: 16713305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative magnetic resonance imaging in experimental hypercapnia: improvement in the relation between changes in brain R2 and the oxygen saturation of venous blood after correction for changes in cerebral blood volume.
    Lin W; Celik A; Paczynski RP; Hsu CY; Powers WJ
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):853-62. PubMed ID: 10458592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vessel size imaging using dual contrast agent injections.
    Hsu YY; Yang WS; Lim KE; Liu HL
    J Magn Reson Imaging; 2009 Nov; 30(5):1078-84. PubMed ID: 19856441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.
    Howseman AM; Bowtell RW
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1179-94. PubMed ID: 10466145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits of 8-Tesla magnetic resonance imaging spatial resolution of the deoxygenated cerebral microvasculature.
    Dashner RA; Kangarlu A; Clark DL; RayChaudhury A; Chakeres DW
    J Magn Reson Imaging; 2004 Mar; 19(3):303-7. PubMed ID: 14994298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time.
    Hulvershorn J; Bloy L; Gualtieri EE; Leigh JS; Elliott MA
    Neuroimage; 2005 Jan; 24(1):216-23. PubMed ID: 15588613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI.
    Weiskopf N; Klose U; Birbaumer N; Mathiak K
    Neuroimage; 2005 Feb; 24(4):1068-79. PubMed ID: 15670684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the MR relaxation rate R(2)* induced by respiratory challenges at 3.0 T: a comparison of two quantification methods.
    Mürtz P; Flacke S; Müller A; Soehle M; Wenningmann I; Kovacs A; Träber F; Willinek WA; Gieseke J; Schild HH; Remmele S
    NMR Biomed; 2010 Nov; 23(9):1053-60. PubMed ID: 20963801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations on the effect of caffeine on cerebral venous vessel contrast by using susceptibility-weighted imaging (SWI) at 1.5, 3 and 7 T.
    Sedlacik J; Helm K; Rauscher A; Stadler J; Mentzel HJ; Reichenbach JR
    Neuroimage; 2008 Mar; 40(1):11-8. PubMed ID: 18226553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.