BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21224293)

  • 41. PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue.
    Samołyk-Kogaczewska N; Sierko E; Zuzda K; Gugnacki P; Szumowski P; Mojsak M; Burzyńska-Śliwowska J; Wojtukiewicz MZ; Szczecina K; Jurgilewicz DH
    Strahlenther Onkol; 2019 Sep; 195(9):780-791. PubMed ID: 31214735
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of manual and automated interpretation of fused PET/CT data on esophageal target definitions in radiation planning.
    Hong TS; Killoran JH; Mamede M; Mamon HJ
    Int J Radiat Oncol Biol Phys; 2008 Dec; 72(5):1612-8. PubMed ID: 19028285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non-small-cell lung cancer.
    Geiger GA; Kim MB; Xanthopoulos EP; Pryma DA; Grover S; Plastaras JP; Langer CJ; Simone CB; Rengan R
    Clin Lung Cancer; 2014 Jan; 15(1):79-85. PubMed ID: 24238934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Positron emission tomography for target volume definition in the treatment of non-small cell lung cancer.
    Lavrenkov K; Partridge M; Cook G; Brada M
    Radiother Oncol; 2005 Oct; 77(1):1-4. PubMed ID: 16225943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving the accuracy of target volume delineation by combined use of computed tomography, magnetic resonance imaging and positron emission tomography in head and neck carcinomas.
    Chauhan D; Rawat S; Sharma MK; Ahlawat P; Pal M; Gupta G; Dewan A; Gupta M; Sharma S; Dodagoudar C; Pahuja A; Mitra S; Sharma SK
    J Cancer Res Ther; 2015; 11(4):746-51. PubMed ID: 26881512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation.
    Ceresoli GL; Cattaneo GM; Castellone P; Rizzos G; Landoni C; Gregorc V; Calandrino R; Villa E; Messa C; Santoro A; Fazio F
    Tumori; 2007; 93(1):88-96. PubMed ID: 17455878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of rigid and adaptive methods of propagating gross tumor volume through respiratory phases of four-dimensional computed tomography image data set.
    Ezhil M; Choi B; Starkschall G; Bucci MK; Vedam S; Balter P
    Int J Radiat Oncol Biol Phys; 2008 May; 71(1):290-6. PubMed ID: 18406893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multimodality imaging with CT, MR and FDG-PET for radiotherapy target volume delineation in oropharyngeal squamous cell carcinoma.
    Bird D; Scarsbrook AF; Sykes J; Ramasamy S; Subesinghe M; Carey B; Wilson DJ; Roberts N; McDermott G; Karakaya E; Bayman E; Sen M; Speight R; Prestwich RJ
    BMC Cancer; 2015 Nov; 15():844. PubMed ID: 26530182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.
    Dong X; Wu P; Sun X; Li W; Wan H; Yu J; Xing L
    J Med Imaging Radiat Oncol; 2015 Jun; 59(3):338-45. PubMed ID: 25708154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning.
    Hong R; Halama J; Bova D; Sethi A; Emami B
    Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):720-6. PubMed ID: 17293230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring spatial overlap of high-uptake regions derived from dual tracer positron emission tomography-computer tomography imaging using 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine in nonsmall cell lung cancer patients: a prospective pilot study.
    Liu J; Li C; Hu M; Lu J; Shi X; Xing L; Sun X; Fu Z; Yu J; Meng X
    Medicine (Baltimore); 2015 May; 94(17):e678. PubMed ID: 25929896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.
    van Der Wel A; Nijsten S; Hochstenbag M; Lamers R; Boersma L; Wanders R; Lutgens L; Zimny M; Bentzen SM; Wouters B; Lambin P; De Ruysscher D
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(3):649-55. PubMed ID: 15708242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.
    Schinagl DA; Vogel WV; Hoffmann AL; van Dalen JA; Oyen WJ; Kaanders JH
    Int J Radiat Oncol Biol Phys; 2007 Nov; 69(4):1282-9. PubMed ID: 17967318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficacy of FDG-PET for defining gross tumor volume of head and neck cancer.
    Kajitani C; Asakawa I; Uto F; Katayama E; Inoue K; Tamamoto T; Shirone N; Okamoto H; Kirita T; Hasegawa M
    J Radiat Res; 2013 Jul; 54(4):671-8. PubMed ID: 23287772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.
    Han C; Sampath S; Schultheisss TE; Wong JYC
    Med Dosim; 2017 Summer; 42(2):116-121. PubMed ID: 28433482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of primary target volumes delineated on four-dimensional CT and 18 F-FDG PET/CT of non-small-cell lung cancer.
    Duan YL; Li JB; Zhang YJ; Wang W; Li FX; Sun XR; Guo YL; Shang DP
    Radiat Oncol; 2014 Aug; 9():182. PubMed ID: 25123450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic resonance (MR) imaging for tumor staging and definition of tumor volumes on radiation treatment planning in nonsmall cell lung cancer: A prospective radiographic cohort study of single center clinical outcome.
    Zhao D; Hu Q; Qi L; Wang J; Wu H; Zhu G; Yu H
    Medicine (Baltimore); 2017 Feb; 96(8):e5943. PubMed ID: 28225485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Delineation of lung cancer with FDG PET/CT during radiation therapy.
    Ganem J; Thureau S; Gardin I; Modzelewski R; Hapdey S; Vera P
    Radiat Oncol; 2018 Nov; 13(1):219. PubMed ID: 30419929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Impact of computed tomography (CT) and 18F-deoxyglucose-coincidence detection emission tomography (FDG-CDET) image fusion for optimisation of conformal radiotherapy in non-small-cell lung cancers].
    Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN
    Cancer Radiother; 2005 Sep; 9(5):304-15. PubMed ID: 16087377
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan.
    Aerts HJ; van Baardwijk AA; Petit SF; Offermann C; Loon Jv; Houben R; Dingemans AM; Wanders R; Boersma L; Borger J; Bootsma G; Geraedts W; Pitz C; Simons J; Wouters BG; Oellers M; Lambin P; Bosmans G; Dekker AL; De Ruysscher D
    Radiother Oncol; 2009 Jun; 91(3):386-92. PubMed ID: 19329207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.