These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 21224835)
1. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Millington-Ward S; Chadderton N; O'Reilly M; Palfi A; Goldmann T; Kilty C; Humphries M; Wolfrum U; Bennett J; Humphries P; Kenna PF; Farrar GJ Mol Ther; 2011 Apr; 19(4):642-9. PubMed ID: 21224835 [TBL] [Abstract][Full Text] [Related]
2. A transgenic mouse model for gene therapy of rhodopsin-linked Retinitis Pigmentosa. O'Reilly M; Millington-Ward S; Palfi A; Chadderton N; Cronin T; McNally N; Humphries MM; Humphries P; Kenna PF; Farrar GJ Vision Res; 2008 Feb; 48(3):386-91. PubMed ID: 17920651 [TBL] [Abstract][Full Text] [Related]
3. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Chadderton N; Millington-Ward S; Palfi A; O'Reilly M; Tuohy G; Humphries MM; Li T; Humphries P; Kenna PF; Farrar GJ Mol Ther; 2009 Apr; 17(4):593-9. PubMed ID: 19174761 [TBL] [Abstract][Full Text] [Related]
4. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. O'Reilly M; Palfi A; Chadderton N; Millington-Ward S; Ader M; Cronin T; Tuohy T; Auricchio A; Hildinger M; Tivnan A; McNally N; Humphries MM; Kiang AS; Humphries P; Kenna PF; Farrar GJ Am J Hum Genet; 2007 Jul; 81(1):127-35. PubMed ID: 17564969 [TBL] [Abstract][Full Text] [Related]
5. Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP). Ahmed CM; Massengill MT; Ildefonso CJ; Jalligampala A; Zhu P; Li H; Patel AP; McCall MA; Lewin AS Vision Res; 2023 May; 206():108189. PubMed ID: 36773475 [TBL] [Abstract][Full Text] [Related]
6. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Mao H; James T; Schwein A; Shabashvili AE; Hauswirth WW; Gorbatyuk MS; Lewin AS Hum Gene Ther; 2011 May; 22(5):567-75. PubMed ID: 21126223 [TBL] [Abstract][Full Text] [Related]
7. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Greenwald DL; Cashman SM; Kumar-Singh R Gene Ther; 2013 Apr; 20(4):425-34. PubMed ID: 22809998 [TBL] [Abstract][Full Text] [Related]
8. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Cideciyan AV; Sudharsan R; Dufour VL; Massengill MT; Iwabe S; Swider M; Lisi B; Sumaroka A; Marinho LF; Appelbaum T; Rossmiller B; Hauswirth WW; Jacobson SG; Lewin AS; Aguirre GD; Beltran WA Proc Natl Acad Sci U S A; 2018 Sep; 115(36):E8547-E8556. PubMed ID: 30127005 [TBL] [Abstract][Full Text] [Related]
9. Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Orlans HO; McClements ME; Barnard AR; Martinez-Fernandez de la Camara C; MacLaren RE Nat Commun; 2021 Aug; 12(1):4934. PubMed ID: 34400638 [TBL] [Abstract][Full Text] [Related]
11. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Orlans HO; Barnard AR; PatrÃcio MI; McClements ME; MacLaren RE Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751 [TBL] [Abstract][Full Text] [Related]
12. Clustered Regularly Interspaced Short Palindromic Repeats-Based Genome Surgery for the Treatment of Autosomal Dominant Retinitis Pigmentosa. Tsai YT; Wu WH; Lee TT; Wu WP; Xu CL; Park KS; Cui X; Justus S; Lin CS; Jauregui R; Su PY; Tsang SH Ophthalmology; 2018 Sep; 125(9):1421-1430. PubMed ID: 29759820 [TBL] [Abstract][Full Text] [Related]
13. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model. Patrizi C; Llado M; Benati D; Iodice C; Marrocco E; Guarascio R; Surace EM; Cheetham ME; Auricchio A; Recchia A Am J Hum Genet; 2021 Feb; 108(2):295-308. PubMed ID: 33508235 [TBL] [Abstract][Full Text] [Related]
14. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Gorbatyuk MS; Pang JJ; Thomas J; Hauswirth WW; Lewin AS Mol Vis; 2005 Aug; 11():648-56. PubMed ID: 16145542 [TBL] [Abstract][Full Text] [Related]
15. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. Mussolino C; Sanges D; Marrocco E; Bonetti C; Di Vicino U; Marigo V; Auricchio A; Meroni G; Surace EM EMBO Mol Med; 2011 Mar; 3(3):118-28. PubMed ID: 21268285 [TBL] [Abstract][Full Text] [Related]
16. Knockout and Replacement Gene Surgery to Treat Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Sun X; Liang C; Chen Y; Cui T; Han J; Dai M; Zhang Y; Zhou Q; Li W Hum Gene Ther; 2024 Mar; 35(5-6):151-162. PubMed ID: 38368562 [TBL] [Abstract][Full Text] [Related]
17. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Mitra RN; Zheng M; Weiss ER; Han Z Biomaterials; 2018 Mar; 157():26-39. PubMed ID: 29232624 [TBL] [Abstract][Full Text] [Related]
18. Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Rossmiller B; Mao H; Lewin AS Mol Vis; 2012; 18():2479-96. PubMed ID: 23077406 [TBL] [Abstract][Full Text] [Related]
19. Advancing Gene Therapy for PDE6A Retinitis Pigmentosa. Petersen-Jones SM; Occelli LM; Biel M; Michalakis S Adv Exp Med Biol; 2019; 1185():103-107. PubMed ID: 31884596 [TBL] [Abstract][Full Text] [Related]
20. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Gorbatyuk M; Justilien V; Liu J; Hauswirth WW; Lewin AS Exp Eye Res; 2007 Jan; 84(1):44-52. PubMed ID: 17083931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]