These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21225245)

  • 1. XPS investigations of electrolyte/electrode interactions for various Li-ion battery materials.
    Oswald S; Mikhailova D; Scheiba F; Reichel P; Fiedler A; Ehrenberg H
    Anal Bioanal Chem; 2011 May; 400(3):691-6. PubMed ID: 21225245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi in situ XPS investigations on intercalation mechanisms in Li-ion battery materials.
    Oswald S; Nikolowski K; Ehrenberg H
    Anal Bioanal Chem; 2009 Apr; 393(8):1871-7. PubMed ID: 19066866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis.
    Muñoz-Márquez MA; Zarrabeitia M; Castillo-Martínez E; Eguía-Barrio A; Rojo T; Casas-Cabanas M
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7801-8. PubMed ID: 25811538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely Low Resistance of Li
    Kawasoko H; Shiraki S; Suzuki T; Shimizu R; Hitosugi T
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27498-27502. PubMed ID: 29989389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.
    Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T
    Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the electrode-solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy.
    Ge A; Inoue KI; Ye S
    J Chem Phys; 2020 Nov; 153(17):170902. PubMed ID: 33167651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.
    Dedryvère R; Leroy S; Martinez H; Blanchard F; Lemordant D; Gonbeau D
    J Phys Chem B; 2006 Jul; 110(26):12986-92. PubMed ID: 16805604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity at the Electrode-Electrolyte Interfaces in Li-Ion and Gel Electrolyte Lithium Batteries for LiNi
    Soloy A; Flahaut D; Foix D; Allouche J; Vallverdu GS; Dumont E; Gal L; Weill F; Croguennec L
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28792-28806. PubMed ID: 35713323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation.
    Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W
    Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system.
    Maibach J; Xu C; Eriksson SK; Åhlund J; Gustafsson T; Siegbahn H; Rensmo H; Edström K; Hahlin M
    Rev Sci Instrum; 2015 Apr; 86(4):044101. PubMed ID: 25933870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical and Spectroscopic Analysis of the Ionogel-Electrode Interface.
    Ashby DS; DeBlock RH; Choi CS; Sugimoto W; Dunn B
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):12088-12097. PubMed ID: 30801176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interphase evolution at two promising electrode materials for Li-ion batteries: LiFePO4 and LiNi1/2 Mn1/2O2.
    Dupré N; Cuisinier M; Martin JF; Guyomard D
    Chemphyschem; 2014 Jul; 15(10):1922-38. PubMed ID: 24789623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts.
    Busche MR; Drossel T; Leichtweiss T; Weber DA; Falk M; Schneider M; Reich ML; Sommer H; Adelhelm P; Janek J
    Nat Chem; 2016 May; 8(5):426-34. PubMed ID: 27102676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Faradaic Li
    Gittleson FS; El Gabaly F
    Nano Lett; 2017 Nov; 17(11):6974-6982. PubMed ID: 29058442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study.
    Philippe B; Dedryvère R; Gorgoi M; Rensmo H; Gonbeau D; Edström K
    J Am Chem Soc; 2013 Jul; 135(26):9829-42. PubMed ID: 23763546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte.
    Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D
    J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.