BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 21225255)

  • 21. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin.
    Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G
    Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and anti-pseudomonal activity of new ß-Ala modified analogues of the antimicrobial peptide anoplin.
    Zhong C; Zhu Y; Zhu N; Liu T; Gou S; Zhang F; Yao J; Xie J; Ni J
    Int J Med Microbiol; 2020 Jul; 310(5):151433. PubMed ID: 32654770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now?
    Divyashree M; Mani MK; Reddy D; Kumavath R; Ghosh P; Azevedo V; Barh D
    Protein Pept Lett; 2020; 27(2):120-134. PubMed ID: 31553285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer simulation of antimicrobial peptides.
    Mátyus E; Kandt C; Tieleman DP
    Curr Med Chem; 2007; 14(26):2789-98. PubMed ID: 18045125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics.
    Lohner K; Blondelle SE
    Comb Chem High Throughput Screen; 2005 May; 8(3):241-56. PubMed ID: 15892626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles.
    van der Weide H; Vermeulen-de Jongh DMC; van der Meijden A; Boers SA; Kreft D; Ten Kate MT; Falciani C; Pini A; Strandh M; Bakker-Woudenberg IAJM; Hays JP; Goessens WHF
    Int J Antimicrob Agents; 2019 Aug; 54(2):159-166. PubMed ID: 31173867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.
    Lee TH; Hall KN; Aguilar MI
    Curr Top Med Chem; 2016; 16(1):25-39. PubMed ID: 26139112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DRAMP: a comprehensive data repository of antimicrobial peptides.
    Fan L; Sun J; Zhou M; Zhou J; Lao X; Zheng H; Xu H
    Sci Rep; 2016 Apr; 6():24482. PubMed ID: 27075512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides.
    Wibowo D; Zhao CX
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):659-671. PubMed ID: 30470869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The expanding scope of antimicrobial peptide structures and their modes of action.
    Nguyen LT; Haney EF; Vogel HJ
    Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues.
    Arias M; Piga KB; Hyndman ME; Vogel HJ
    Biomolecules; 2018 Apr; 8(2):. PubMed ID: 29671805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.
    Falanga A; Lombardi L; Franci G; Vitiello M; Iovene MR; Morelli G; Galdiero M; Galdiero S
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational studies of protegrin antimicrobial peptides: a review.
    Bolintineanu DS; Kaznessis YN
    Peptides; 2011 Jan; 32(1):188-201. PubMed ID: 20946928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revealing the Mode of Action of Halictine Antimicrobial Peptides: A Comprehensive Study with Model Membranes.
    Domingues TM; Perez KR; Riske KA
    Langmuir; 2020 May; 36(19):5145-5155. PubMed ID: 32336099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial Peptides: Vestiges of Past or Modern Therapeutics?
    Mitra JB; Sharma VK; Kumar M; Mukherjee A
    Mini Rev Med Chem; 2020; 20(3):183-195. PubMed ID: 31774045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The novel biological action of antimicrobial peptides via apoptosis induction.
    Cho J; Hwang IS; Choi H; Hwang JH; Hwang JS; Lee DG
    J Microbiol Biotechnol; 2012 Nov; 22(11):1457-66. PubMed ID: 23124334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial Peptides: An Introduction.
    Haney EF; Mansour SC; Hancock RE
    Methods Mol Biol; 2017; 1548():3-22. PubMed ID: 28013493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial Peptides: A Promising Avenue for Human Healthcare.
    Bhopale GM
    Curr Pharm Biotechnol; 2020; 21(2):90-96. PubMed ID: 31612826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations.
    Melo MN; Ferre R; Castanho MA
    Nat Rev Microbiol; 2009 Mar; 7(3):245-50. PubMed ID: 19219054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.