BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21225660)

  • 1. Cytolytic peptide nanoparticles ('NanoBees') for cancer therapy.
    Pan H; Soman NR; Schlesinger PH; Lanza GM; Wickline SA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(3):318-27. PubMed ID: 21225660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth.
    Soman NR; Baldwin SL; Hu G; Marsh JN; Lanza GM; Heuser JE; Arbeit JM; Wickline SA; Schlesinger PH
    J Clin Invest; 2009 Sep; 119(9):2830-42. PubMed ID: 19726870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted nanoparticles for head and neck cancers: overview and perspectives.
    Zhao Y; Chen H; Chen X; Hollett G; Gu Z; Wu J; Liu X
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Nov; 9(6):. PubMed ID: 28387452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies.
    Yu X; Jia S; Yu S; Chen Y; Zhang C; Chen H; Dai Y
    J Nanobiotechnology; 2023 Nov; 21(1):454. PubMed ID: 38017537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendrimer-based nanocarriers: a versatile platform for drug delivery.
    Hsu HJ; Bugno J; Lee SR; Hong S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Jan; 9(1):. PubMed ID: 27126551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery of a Protease-Activated Cytolytic Peptide Prodrug by Perfluorocarbon Nanoparticles.
    Jallouk AP; Palekar RU; Marsh JN; Pan H; Pham CT; Schlesinger PH; Wickline SA
    Bioconjug Chem; 2015 Aug; 26(8):1640-50. PubMed ID: 26083278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy?
    Fontana F; Liu D; Hirvonen J; Santos HA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Jan; 9(1):. PubMed ID: 27470448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and regulation of exosome-based therapy products.
    Batrakova EV; Kim MS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016 Sep; 8(5):744-57. PubMed ID: 26888041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging.
    Sangtani A; Nag OK; Field LD; Breger JC; Delehanty JB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Nov; 9(6):. PubMed ID: 28299903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides.
    Soman NR; Lanza GM; Heuser JM; Schlesinger PH; Wickline SA
    Nano Lett; 2008 Apr; 8(4):1131-6. PubMed ID: 18302330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. α-Helical coiled-coil peptide materials for biomedical applications.
    Wu Y; Collier JH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Mar; 9(2):. PubMed ID: 27597649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases.
    Kelley WJ; Safari H; Lopez-Cazares G; Eniola-Adefeso O
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016 Nov; 8(6):909-926. PubMed ID: 27194461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional platinum-based nanoparticles for biomedical applications.
    Cheng Q; Liu Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Mar; 9(2):. PubMed ID: 27094725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomedicine approaches to improve cancer immunotherapy.
    Qiu H; Min Y; Rodgers Z; Zhang L; Wang AZ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28296286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle formulations of cisplatin for cancer therapy.
    Duan X; He C; Kron SJ; Lin W
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016 Sep; 8(5):776-91. PubMed ID: 26848041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.
    Karimi M; Eslami M; Sahandi-Zangabad P; Mirab F; Farajisafiloo N; Shafaei Z; Ghosh D; Bozorgomid M; Dashkhaneh F; Hamblin MR
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016 Sep; 8(5):696-716. PubMed ID: 26762467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in aliphatic polyesters for drug delivery applications.
    Washington KE; Kularatne RN; Karmegam V; Biewer MC; Stefan MC
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Jul; 9(4):. PubMed ID: 27910243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melittin: a lytic peptide with anticancer properties.
    Gajski G; Garaj-Vrhovac V
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):697-705. PubMed ID: 23892471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of lytic peptide-bound magnetite nanoparticles in destroying breast cancer cells.
    Kumar CS; Leuschner C; Doomes EE; Henry L; Juban M; Hormes J
    J Nanosci Nanotechnol; 2004 Mar; 4(3):245-9. PubMed ID: 15233083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turning Toxicants into Safe Therapeutic Drugs: Cytolytic Peptide-Photosensitizer Assemblies for Optimized In Vivo Delivery of Melittin.
    Jia HR; Zhu YX; Xu KF; Wu FG
    Adv Healthc Mater; 2018 Aug; 7(16):e1800380. PubMed ID: 29931753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.