These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21226014)

  • 1. Stretchable GaAs photovoltaics with designs that enable high areal coverage.
    Lee J; Wu J; Shi M; Yoon J; Park SI; Li M; Liu Z; Huang Y; Rogers JA
    Adv Mater; 2011 Feb; 23(8):986-91. PubMed ID: 21226014
    [No Abstract]   [Full Text] [Related]  

  • 2. Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics.
    Lee J; Wu J; Ryu JH; Liu Z; Meitl M; Zhang YW; Huang Y; Rogers JA
    Small; 2012 Jun; 8(12):1851-6. PubMed ID: 22467638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency enhancement in GaAs solar cells using self-assembled microspheres.
    Chang TH; Wu PH; Chen SH; Chan CH; Lee CC; Chen CC; Su YK
    Opt Express; 2009 Apr; 17(8):6519-24. PubMed ID: 19365476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.
    Ren S; Zhao N; Crawford SC; Tambe M; Bulović V; Gradecak S
    Nano Lett; 2011 Feb; 11(2):408-13. PubMed ID: 21171629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge.
    Sablon KA; Little JW; Mitin V; Sergeev A; Vagidov N; Reinhardt K
    Nano Lett; 2011 Jun; 11(6):2311-7. PubMed ID: 21545165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.
    Yang T; Wang X; Liu W; Shi Y; Yang F
    Opt Express; 2013 Jul; 21(15):18207-15. PubMed ID: 23938691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned radial GaAs nanopillar solar cells.
    Mariani G; Wong PS; Katzenmeyer AM; Léonard F; Shapiro J; Huffaker DL
    Nano Lett; 2011 Jun; 11(6):2490-4. PubMed ID: 21604750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.
    Lee YC; Chang CC; Chou YY
    Opt Express; 2013 Jan; 21 Suppl 1():A36-41. PubMed ID: 23389273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency nanostructured window GaAs solar cells.
    Liang D; Kang Y; Huo Y; Chen Y; Cui Y; Harris JS
    Nano Lett; 2013 Oct; 13(10):4850-6. PubMed ID: 24021024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GaAs core--shell nanowires for photovoltaic applications.
    Czaban JA; Thompson DA; LaPierre RR
    Nano Lett; 2009 Jan; 9(1):148-54. PubMed ID: 19143502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells.
    Shu GW; Lin JY; Jian HT; Shen JL; Wang SC; Chou CL; Chou WC; Wu CH; Chiu CH; Kuo HC
    Opt Express; 2013 Jan; 21 Suppl 1():A123-30. PubMed ID: 23389263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreflectance characteristic about AlGaAs/GaAs heterostructure.
    Yu JI; Yun JG; Kim DL; Bae IH
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(1):54-6. PubMed ID: 16529996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators.
    Mariani G; Zhou Z; Scofield A; Huffaker DL
    Nano Lett; 2013 Apr; 13(4):1632-7. PubMed ID: 23485255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional in situ photocurrent mapping for nanowire photovoltaics.
    Parkinson P; Lee YH; Fu L; Breuer S; Tan HH; Jagadish C
    Nano Lett; 2013 Apr; 13(4):1405-9. PubMed ID: 23464357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells.
    Lee YS; Chua D; Brandt RE; Siah SC; Li JV; Mailoa JP; Lee SW; Gordon RG; Buonassisi T
    Adv Mater; 2014 Jul; 26(27):4704-10. PubMed ID: 24862543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast strain-induced current in a GaAs Schottky diode.
    Moss DM; Akimov AV; Glavin BA; Henini M; Kent AJ
    Phys Rev Lett; 2011 Feb; 106(6):066602. PubMed ID: 21405483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastic and elastic strain fields in GaAs/Si core-shell nanowires.
    Conesa-Boj S; Boioli F; Russo-Averchi E; Dunand S; Heiss M; Rüffer D; Wyrsch N; Ballif C; Miglio L; Fontcuberta i Morral A
    Nano Lett; 2014; 14(4):1859-64. PubMed ID: 24564880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gold diffusion on n-type doping of GaAs nanowires.
    Tambe MJ; Ren S; Gradecak S
    Nano Lett; 2010 Nov; 10(11):4584-9. PubMed ID: 20939583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers.
    Fedorova KA; Cataluna MA; Krestnikov I; Livshits D; Rafailov EU
    Opt Express; 2010 Aug; 18(18):19438-43. PubMed ID: 20940839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second harmonic generation in a low-loss orientation-patterned GaAs waveguide.
    Fedorova KA; McRobbie AD; Sokolovskii GS; Schunemann PG; Rafailov EU
    Opt Express; 2013 Jul; 21(14):16424-30. PubMed ID: 23938493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.