BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 21226164)

  • 1. Photocatalytic production of hydrogen by disproportionation of one-electron-reduced rhodium and iridium-ruthenium complexes in water.
    Fukuzumi S; Kobayashi T; Suenobu T
    Angew Chem Int Ed Engl; 2011 Jan; 50(3):728-31. PubMed ID: 21226164
    [No Abstract]   [Full Text] [Related]  

  • 2. Visible light induced catalytic water reduction without an electron relay.
    Tinker LL; McDaniel ND; Curtin PN; Smith CK; Ireland MJ; Bernhard S
    Chemistry; 2007; 13(31):8726-32. PubMed ID: 17654456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal activity of rhodium, iridium, and ruthenium tripodal phosphine complexes.
    Sülü M; Küçükbay H; Durmaz R; Günal S
    New Microbiol; 2000 Jan; 23(1):73-8. PubMed ID: 10946408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines.
    Yuan YJ; Yu ZT; Cai JG; Zheng C; Huang W; Zou ZG
    ChemSusChem; 2013 Aug; 6(8):1357-65. PubMed ID: 23843363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative bimetallic reactivity: hydrogen activation in two-electron mixed-valence compounds.
    Gray TG; Veige AS; Nocera DG
    J Am Chem Soc; 2004 Aug; 126(31):9760-8. PubMed ID: 15291579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of rhodium(I) and iridium(I) complexes of chiral N-heterocyclic carbenes and their application to asymmetric transfer hydrogenation.
    Dyson G; Frison JC; Whitwood AC; Douthwaite RE
    Dalton Trans; 2009 Sep; (35):7141-51. PubMed ID: 20449158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading.
    Okamoto Y; Ida S; Hyodo J; Hagiwara H; Ishihara T
    J Am Chem Soc; 2011 Nov; 133(45):18034-7. PubMed ID: 21999601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector.
    Arachchige SM; Shaw R; White TA; Shenoy V; Tsui HM; Brewer KJ
    ChemSusChem; 2011 Apr; 4(4):514-8. PubMed ID: 21438156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group 9 organometallic compounds for therapeutic and bioanalytical applications.
    Ma DL; Chan DS; Leung CH
    Acc Chem Res; 2014 Dec; 47(12):3614-31. PubMed ID: 25369127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and structural characterization of binuclear half-sandwich iridium, rhodium and ruthenium complexes containing 4,4'-dipyridyldisulfide (4DPDS) ligands.
    Han YF; Li H; Fei Y; Lin YJ; Zhang WZ; Jin GX
    Dalton Trans; 2010 Aug; 39(30):7119-24. PubMed ID: 20593103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor.
    Betanzos-Lara S; Liu Z; Habtemariam A; Pizarro AM; Qamar B; Sadler PJ
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3897-900. PubMed ID: 22415924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible switching of the sol-gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks.
    Paulusse JM; van Beek DJ; Sijbesma RP
    J Am Chem Soc; 2007 Feb; 129(8):2392-7. PubMed ID: 17269773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water attack umpolung aromatic systems to release hydrogen.
    Chen TR; Lee HP; Chen JD
    Inorg Chem; 2011 Apr; 50(8):3645-50. PubMed ID: 21395286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iridium- and rhodium-catalyzed dehydrogenative silylations of C(sp3)-H bonds adjacent to a nitrogen atom using hydrosilanes.
    Mita T; Michigami K; Sato Y
    Chem Asian J; 2013 Dec; 8(12):2970-3. PubMed ID: 24006175
    [No Abstract]   [Full Text] [Related]  

  • 15. Rhodium and iridium amido complexes supported by silyl pincer ligation: ammonia N-H bond activation by a [PSiP]Ir complex.
    Morgan E; MacLean DF; McDonald R; Turculet L
    J Am Chem Soc; 2009 Oct; 131(40):14234-6. PubMed ID: 19775090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-atom transfer in open-shell organometallic chemistry: the reactivity of Rh(II)(cod) and Ir(II)(cod) radicals.
    Hetterscheid DG; Klop M; Kicken RJ; Smits JM; Reijerse EJ; de Bruin B
    Chemistry; 2007; 13(12):3386-405. PubMed ID: 17219454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of luminescent biotinylation reagents derived from cyclometalated iridium(III) and rhodium(III) bis(pyridylbenzaldehyde) complexes.
    Leung SK; Kwok KY; Zhang KY; Lo KK
    Inorg Chem; 2010 Jun; 49(11):4984-95. PubMed ID: 20465281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust method to heterogenise and recycle group 9 catalysts.
    Lucas SJ; Crossley BD; Pettman AJ; Vassileiou AD; Screen TE; Blacker AJ; McGowan PC
    Chem Commun (Camb); 2013 Jun; 49(49):5562-4. PubMed ID: 23673927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of peptides and pyrazines from β-amino alcohols through extrusion of H2 catalyzed by ruthenium pincer complexes: ligand-controlled selectivity.
    Gnanaprakasam B; Balaraman E; Ben-David Y; Milstein D
    Angew Chem Int Ed Engl; 2011 Dec; 50(51):12240-4. PubMed ID: 22031234
    [No Abstract]   [Full Text] [Related]  

  • 20. Trapping unstable benzoquinone analogues by coordination to a [(η(5)-C(5)Me(5))Ir] fragment and the anticancer activity of the resulting complexes.
    Hartinger CG
    Angew Chem Int Ed Engl; 2010 Nov; 49(45):8304-5. PubMed ID: 20803595
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.