BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21226197)

  • 1. Quantification of photosensitized singlet oxygen production by a fluorescent protein.
    Ragàs X; Cooper LP; White JH; Nonell S; Flors C
    Chemphyschem; 2011 Jan; 12(1):161-5. PubMed ID: 21226197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward understanding the mechanism of chromophore-assisted laser inactivation--evidence for the primary photochemical steps.
    Horstkotte E; Schröder T; Niewöhner J; Thiel E; Jay DG; Henning SW
    Photochem Photobiol; 2005; 81(2):358-66. PubMed ID: 15623352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.
    Keppler A; Ellenberg J
    ACS Chem Biol; 2009 Feb; 4(2):127-38. PubMed ID: 19191588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media.
    Arnbjerg J; Johnsen M; Nielsen CB; Jørgensen M; Ogilby PR
    J Phys Chem A; 2007 May; 111(21):4573-83. PubMed ID: 17480060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the phototoxicity of the fluorescent protein KillerRed.
    Carpentier P; Violot S; Blanchoin L; Bourgeois D
    FEBS Lett; 2009 Sep; 583(17):2839-42. PubMed ID: 19646983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore.
    Jiménez-Banzo A; Ragàs X; Abbruzzetti S; Viappiani C; Campanini B; Flors C; Nonell S
    Photochem Photobiol Sci; 2010 Oct; 9(10):1336-41. PubMed ID: 20672172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet Oxygen Sensor Green®: photochemical behavior in solution and in a mammalian cell.
    Gollmer A; Arnbjerg J; Blaikie FH; Pedersen BW; Breitenbach T; Daasbjerg K; Glasius M; Ogilby PR
    Photochem Photobiol; 2011; 87(3):671-9. PubMed ID: 21272007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of squaraine dyes: role of charge-transfer in singlet oxygen production and removal.
    Salice P; Arnbjerg J; Pedersen BW; Toftegaard R; Beverina L; Pagani GA; Ogilby PR
    J Phys Chem A; 2010 Feb; 114(7):2518-25. PubMed ID: 20121177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species in photochemistry of the red fluorescent protein "Killer Red".
    Vegh RB; Solntsev KM; Kuimova MK; Cho S; Liang Y; Loo BL; Tolbert LM; Bommarius AS
    Chem Commun (Camb); 2011 May; 47(17):4887-9. PubMed ID: 21359336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetically-encoded photosensitiser demonstrates killing of bacteria by purely endogenous singlet oxygen.
    Ruiz-González R; White JH; Agut M; Nonell S; Flors C
    Photochem Photobiol Sci; 2012 Sep; 11(9):1411-3. PubMed ID: 22729069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically targeted chromophore-assisted light inactivation.
    Tour O; Meijer RM; Zacharias DA; Adams SR; Tsien RY
    Nat Biotechnol; 2003 Dec; 21(12):1505-8. PubMed ID: 14625562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen generation by the genetically encoded tag miniSOG.
    Ruiz-González R; Cortajarena AL; Mejias SH; Agut M; Nonell S; Flors C
    J Am Chem Soc; 2013 Jul; 135(26):9564-7. PubMed ID: 23781844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein.
    Tanabe T; Oyamada M; Fujita K; Dai P; Tanaka H; Takamatsu T
    Nat Methods; 2005 Jul; 2(7):503-5. PubMed ID: 15973419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singlet oxygen photosensitization by EGFP and its chromophore HBDI.
    Jiménez-Banzo A; Nonell S; Hofkens J; Flors C
    Biophys J; 2008 Jan; 94(1):168-72. PubMed ID: 17766345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion pathways of oxygen species in the phototoxic fluorescent protein KillerRed.
    Roy A; Carpentier P; Bourgeois D; Field M
    Photochem Photobiol Sci; 2010 Oct; 9(10):1342-50. PubMed ID: 20820672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells.
    Takemoto K; Matsuda T; McDougall M; Klaubert DH; Hasegawa A; Los GV; Wood KV; Miyawaki A; Nagai T
    ACS Chem Biol; 2011 May; 6(5):401-6. PubMed ID: 21226520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of chromophore assisted laser inactivation employing fluorescent proteins.
    McLean MA; Rajfur Z; Chen Z; Humphrey D; Yang B; Sligar SG; Jacobson K
    Anal Chem; 2009 Mar; 81(5):1755-61. PubMed ID: 19199572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromophore-assisted laser inactivation in cell biology.
    Jacobson K; Rajfur Z; Vitriol E; Hahn K
    Trends Cell Biol; 2008 Sep; 18(9):443-50. PubMed ID: 18706812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fluorescent proteins: physical-chemical properties and application in cell biology].
    Stepanenko OV; Verkhusha VV; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2007; 49(5):395-420. PubMed ID: 17654827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen.
    Greenbaum L; Rothmann C; Lavie R; Malik Z
    Biol Chem; 2000 Dec; 381(12):1251-8. PubMed ID: 11209760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.